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CURVES AND FUNCTIONS.

BOOK I.

APPLICATION OF ALGEBRA TO GEOMETRY.

CHAPTER I.

GEOMETRICAL CONSTRUCTION OF ALGEBRAICAL QUANTI-

TIES.

1. In the application of Algebra to Geometry, usually

called Analytic Geometry, the magnitudes of lines,

angles, surfaces, and solids are expressed by means of

letters of the alphabet: and each problem, being put

into equations by the exercise of ingenuity, is solved

by the ordinary processes of Algebra. The algebraical

result is finally to be interpreted geometrically : and

this geometrical interpretation of an algebraical expres-

sion is called the geometrical construction of that ex-

pression. The geometrical construction of the results

is, then, the last operation in the solution of problems
j

but it is convenient, on account of its simplicity, to

begin with the consideration of it. We begin with

the easiest cases and proceed to the more difficult ones,

and we regard each letter as representing a line, so that

1



2 ANALYTICAL GEOMETRY. [fi. I. CH. I.

Sum and difference. Negative sign.

every algebraical expression of the first degree will de-

note a line ; whence it is called linear.

2. Problem. To construct a -\- b.

Solution. Take (fig. 1.)

AB = a,

BC=b;
and we have

AC=AB + BC=a + b;

so that AC is the required value of a -|- b.

3. Problem. To construct a — b.

Solution. Take (fig. 2.)

AB = a,

and from JB, in the opposite direction,

BC=b;
we have then

AC= AB — BC= a — b
;

so that AC is the required result.

4. Corollary. If a were zero, the preceding solution would

become the same as to take from A (fig. 3.) in the direction

AC, opposite to AB,
AC=b;

so that the negative sign would only be indicated by the

direction of AC. In order to generalize the preceding con-

struction we must, then, adopt the rule that

The geometrical interpretation of the negative sign

is opposite direction.

5. Problem. To construct an algebraic expression con-

sisting of a series of letters connected together by the

signs -{- and —

.
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Product and Quotient. Surface and Solid.

Solution. Collect into one sum, by art. 2, all the letters

preceded by +, which sum may be denoted by a ; and col-

lect into another sum all the letters preceded by — , which

sum may be denoted by b ; and the value of a — b may then

be constructed by art. 3.

6. Corollary, If a letter is preceded by an integral

numerical coefficient, it may be regarded as a letter re-

peated a number of times equal to this integer.

7. Problem. To construct a b.

Solution. The parallelogram of which the base is a, and

the altitude is b, is equal to the product a b, which accordingly

represents a surface ; and this conclusion is a general one,

that is,

A homogeneous algebraical expression of the second

degree represents a surface.

8. Problem. To construct a b c.

Solution. The parallelopiped of which the base is the par-

allelogram a b, and the altitude is c, is equal to the product

a b c, which accordingly represents a solid ; and, in general,

A homogeneous algebraical expression of the third

degree represents a solid.

9. Problem. To construct t-
b

Solution. Make (fig. 4.) the right angle ABC,
take AB = a

BC = b,

and join AC. The angle ACB is, by trigonometry, that

angle whose tangent is -



4 ANALYTICAL GEOMETRY. [b. I. CH. I.

Angle. To render homogeneous.

10. Corollary. If we had taken

AC= b,

the angle ACB would have been the angle, whose sine is -,

and, in general,

A homogeneous algebraical expression, whose degree

is zero, represents the sine, tangent, fyc. of an angle.

11. Scholium. Since no other magnitudes occur in

Geometry but angles, lines, surfaces, and solids, all

algebraical quantities which represent geometrical mag-
nitudes must be either of the 1st, the 2d, the 3d, or the

zero degree ; and since dissimilar geometrical magnitudes

can neither be added together, nor subtracted from each

other, these algebraical expressions must also be homo-

geneous.

If, therefore, an algebraical result is obtained, which

is not homogeneous, or is of a different degree from

those just enumerated ; it can only arise from the cir-

cumstance, that the geometrical unit of length, being

represented algebraically by 1, disappears from alf alge-

braical expressions in which it is either a factor or a

divisor. To render these results homogeneous, then,

and of any required degree, it is only necessary to re-

store this divisor or factor which represents unity.

12. Problem. To render a given algebraical expres-

sion homogeneous and of any required degree.

Solution. Introduce 1, as a factor or divisor, repeated

as many times as may be necessary, into every term

where it is required.
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To render homogeneous of any degree.

13. Examples.

1. Render *T
"J*
— homogeneous of the 1st degree.

Ans .

»»* + (!)' « + !•<*»,

l.e -f- h 2

a -4- d 3
-f- h e

2. Render —~——— homogeneous of the 2d degree.
I
2 -\- m 3 b 5

(1)* a+(l) 2 rf3 + (l) 3 /ig
^4ws.

_}_ 6 c -J- d b h 2

3. Render —— homogeneous of the 3d degree.

Ans.

1 . I2 + m 3

)us of the 3d

(1)6 a + (l)sbc+ d* h 2

(i)2de — (l) 3 a

4. Render — homogeneous of the zero degree.

5. Render a b homogeneous of the 1st degree.

Ans.

1. c — d2
'

th(

ab

6. Render ab c -\- d— e 2 homogeneous of the 1st degree.

ab c

-'"Hi + d ~
' T

14. Scholium. By the preceding process, every frac-

tion, which does not involve radicals, may be reduced

to a homogeneous form, in which each term is of the

first degree ; and, although this form is not always that

which leads to the most simple form of construction,

its generality gives it a peculiar fitness for the general

1*



6 ANALYTICAL GEOMETRY. [b. I. CH. I.

To render homogeneous. Fraction.

purposes of instruction, where the artifices of ingenuity-

are rather to be avoided than displayed.

15. Examples.

1. Reduce the fraction of example 1, art. 13, to a homo-

geneous form, in which each term is of the first degree.

-•(S'+'+f)+(*¥)
2. Reduce the fraction of example 2, art. 13, to a homo-

geneous form, in which each term is of the first degree.

/ .

dz
,

he \ i
12

.

m * \Ans . {a+--
2 +T)-^T+_).

3. Reduce the fraction of example 3, art. 13, to a homo-

geneous form, in which each term is of the first degree.

4. Reduce the fraction of example 4, art. 13, to a homo-

geneous form, in which each term is of the first degree.

16. Problem. To construct —

.

c

Solution. We have

_ ab
c : a = b : —

,

c

that is, the given fraction is a fourth proportional to the three

lines, c, a, and b.

Find, then, by geometry, a fourth proportional to the
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Monomial.

lines c, a, and b ; and this fourth proportional is the

required result.

a2

17. Corollary. The value of— is a third proportional to
c

c and a.

18. Problem. To construct any monomial which de-

notes a line.

Solution. If the monomial is not of the first degree,

reduce it to the first degree by art. 12. It is then of

the form
abed... ab c d

T~Ti '/

==
7 X ~~T, X r • • • •

a' b' d . . . a1 b c

Construct first — 3
and let m be the line which it re-

,—. . . \ m c
presents. 1 he given quantity becomes —- X

Let, again, m! =
b>

N
c'

m c

m' d
also m" = —-, &c.

c

and the last line thus obtained is plainly the required

result.

19. Examples.

1. Construct the line ab. Ans. m = — = ab.

a b mc
2. Construct the line a be. Ans. m=— , m'—— = a b c.
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Any expression not involving radicals.

_ _
, ,. .. a* , m a

3. Construct the line a 5
. Ans. m = — , ml = —-,

m'a m" a
m" = —-—, m" =. —— = a 5

.

4t. Construct the line 7o . Ans. m = —
r , m' = —--

d 3 d' d

m' . 1

.

a 2 b

d ~ d*

2 ab 2a. b , m
5. Construct the line —=—.. Ans. m = , m

efg e ' ' f
1 2ab

m T—•

S efg
1 (I) 2 1

6. Construct the line -. Ans. m = —— = -.
a a a

A 1 A 4.

7. Construct the line —

.

Ans. m = *

== ^—.
JtS Jd H

20. Corollary. By this process each term of an al-

gebraic expression, which does not involve radicals, is

reduced to a line ; and if the expression does not involve

fractions, it may then be reduced to a single line by

art. 5 ; if it does involve fractions, the numerator and

denominator of each fraction is, by art. 5, reduced to a

single line, and each fraction, being then of the forin -=*

is constructed like example 7 of the preceding article,

and the aggregate of the fractions is then reduced to

a single line, by art. S.

Any algebraic expression, which represents a line,

and does not involve radicals, may therefore be con-

structed by this process.
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Any expression free from radical:

21. Examples.

, _,
, ,.

a 2 b + c -f d2

1. Construct the line
e -f h 2

Solution. Let m = = a 2 b

= t = d*
1

m" r=
7*2

-h*

and the fraction becomes

7?Z + c + m!

e -f- m"
'

let now A — m -f- c -\- m'

B — e + m",

1 ..4
and the line represented by ——- is the required line.

2. Construct the line represented by the fraction of example

2, art. 13.

Ans. m — d 3
, m" — he, in'" = I2 , ?nir = m 3

,

A = « + »»'
-J- in", i? — m 1" -\- mIV

,

and the required line is the fourth proportional to B, 1,

and A.

3. Construct the line represented by the fraction of exam-

ple 3, art. 13.

Ans. Let m = b c, m' = d 5 h 2
, m" -de,

A = a -\- m
-f- m', B = m" — a,

and the required line is the fourth proportional to B, 1,

and A.



10 ANALYTICAL GEOMETRY. [b. I. CH. I.

Radicals of the second degree.

4. Construct the line represented by the fraction of exam-

ple 4, art. 13.

Ans. m == a2 , m' = d2
,

A — m -|- 6, B =: c — m',

and the required line is the fourth proportional to B, 1,

and A.

5. Construct the line represented by the polymonial of ex-

ample 6, art. 13.

Ans. ?n — abc, m' = e 2
,

and ^L — m -f- b — m is the required line.

22. Problem. To construct the line \/(a b).

Solution. Since */{a b) is a mean proportional be-

tween a and b, the required result is obtained by con-

structing, geometrically, this mean proportional between

a and b.

23. Corollary. The expression

s/A = */(!. A)

may be constructed by rinding a mean proportional be-

tween 1 and A.

24. Corollary. The square root of any algebraical

expression, which does not involve radicals, may be

constructed by finding, as in art. Ji9, the line A, which

this algebraic expression represents, and then construct-

ing */A as in the preceding article.

By the repeated application of this process, any al-

gebraic expression may be constructed which represents

a line, and which does not involve any other radicals

than those of the second degree.

yc r
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Radicals of the second degree.

25. Examples.

1. Construct the line \/(a -\- b — c — e.)

Ans. A — a -\-b — c — e,

and \/A is the required line.

2. Construct the line \/(a 2
-f- am).

Ans. A — a 2 -\- am,

and a>/A is the required line.

n „ ii- \/ab 4- \/(e f— h)
3 Construct the line — ' .;

v J
r
—'-.

e 2 — v (c 2 —j n)

Ans. m=z\Zab
}
m= \/(ef— h), ro"= e 2 , m'"—*/(c2—fn),

A = m + m', B = m" — m' 1

',

and the line — is the required line.

4
4. Construct the line \/a. Ans. m = \Za,

and \/m is the required line.

26. Scholium. When the expression whose square

root is required is easily decomposed into two factors,

it is immediately reduced to the form */(ab) and con-

structed, as in art. 22.

27. Examples.

1. Construct example 2, art. 25, by decomposing the quan-

tity under the radical sign into two factors.

Solution. a 2
-f- a m = a (a

-f- m).

Let b z=z a -f- m,

and the line \/(a b) is the required line.
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Square root of sum and difference of squares.

2. Construct \/(a2 -\- ae -\- am — an) by decomposing

the quantity under the radical sign into two factors.

Arts, b = a -\- e -\- m — n,

and \/(ab) is the required line.

3. Construct \/(a -\- a 2 — a 3
) by decomposing the quan-

tity under the radical sign into two factors.

Ans. b = 1 -\- a — a2
,

and \/(a b) is the required line.

4. Construct s/ia 2 — b 2 ) by decomposing the quantity

under the radical sign into factors.

Ans. c =± a -f- b, e = a — b,

and \/(c e) is the required line.

28. Scholium. Example 4 of the preceding article

may also be solved by constructing a right triangle, of

which a is the hypotlienuse and b a leg, and*/(a 2 — b 2
)

will be the other leg.

29. Corollary. In the same way \/(a 2 + ° 2
) *? the

hypotlienuse of a right triangle, of which a and b are

the legs.

30. Corollary. By combining the processes of the

two preceding articles, any such expression as

^/(«2 _|_ b2 _ C 2 _ e 2 _|_ ]L 2 _|_) ;
& c#

may be constructed. For if we take

m — */(« 2 + 1>
2
), m ~ /^{m 2 — c 2 ),

m" = \Z(m' 2 — e 2 ), m"> — ^/(m" 2 + h 2
), &c.

we have m2 = a 2 + b 2
,

rri - \/(m 2 — c 2 ) = */{a 2 + b 2 — c2 ),

or m12 — a 2 + b 2 — c 2 ;
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Construction of radicals.

m" = \/(m'2 — e 2 ) =3 \/(a2 + b2 — c 2— e 2 ),

or m"2 = a2 + b 2 — c2 — e2
;

m'"=z^{rn"2 + h2
)
— ^/(a2 + 6 2— c 2— e 2+ A2 ), &c.

31. Corollary. The square root of the sum or dif-

ference of any expressions, which involve no other

radicals than those of the secojid degree, may also be

constructed by the preceding process. For if either of

these expressions is constructed by the processes before

given, it may be represented by A ; and, if we denote

as/A by m, we have

ra2 z± A,

so that each expression is reduced to the form of a

square, and the whole radical is reduced to the form of

the preceding article.

32. Examples.

1. Construct example 1, art. 24, by the process of art. 30. 2-j

Ans. in = \/a, w! =z s/b, m" = \/c, ml" c= \/e
f

and the line \/(m2
-f- W2— m"2— m"'2 ) is the required line.

2. Construct example 2, art. ^24, by the process of art. 30.

Ans. m! = \/(a in), and \/( a2 + m '2
) is tne required

line.

3. Construct the line \Z(a2 -\-bc— e2 -\-h) by process of

art. 30.

Ans. m = s/(b c), m' — s/e3 , m" = s/h,

and the line \/(a2 + w2— m'2 -\-m"2 ) is the required line.

33. Problem. To construct an algebraical expression

which represents a surface.

2
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Surface. Solid. Angle.

Solution, Let A be the line which is represented by

this algebraical expression, and since we have

A = 1.A,

the required surface is represented in magnitude by the

parallelogram, whose base is 1, and altitude A, or by

the equivalent square, triangle, &c.

34. Problem. To construct an algebraical expression

which represents a solid.

Solution. Let A be the line which is represented by

this expression, and since we have

the required solid is represented in magnitude by the

parallelopiped, whose base is the square (I)'2, and whose

altitude is A.

35. Problem. To construct an algebraical expres-

sion, which represents the si?ie
:

tangent, 6fc. of an

angle.

Solution. Let A be the line which is represented by

this expression, and since we have

A- A

the required angle is found by art. 9 or 10.

36. Scholium. The construction of all geometrical

magnitudes being, by the three preceding articles, re-

duced to that of the line ; we shall limit our construc-

tions hereafter to that of the line.
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Equations of first and second degree.

37. Problem. To construct the root of an equation

of the first degree with one unknown quantity.

Solution. Every equation of the first degree may,

as is proved in Algebra, be reduced to the form

A x + M — j

whence

X ~ A'

and this value of x may be constructed by art. 18.

38. Problem. To construct the roots of an equation

of the second degree with one unknown quantity.

Solution. The equation of the second degree may, as

is shown in Algebra, be reduced to the form

A x2 + B x + M ^= 0.

If we divide this equation by A, and put

B M
a =2A> m =A>

it becomes

x2 -{-2ax-{-m=. 0.

The roots of this last equation are

x =. — a ^z \/(a2 — m)

Case 1. When m is positive and greater than a2
,

the roots are both imaginary, and cannot be con-

structed.

Case 2. When m is positive and equal to a2 , each

root is equal to — a, which needs no farther construc-

tion.
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Quadratic equation.

Case 3. When m is 'positive and less than a2 . Let,

in this case, b =s \^m, or b2 =. m.

The roots become

x = — a ± \/(«2 — b 2 ),

which are thus constructed.

Draw (fig. 5.) tfAe fa#o indefinite lines DAD' and

AB perpendicular to each other. Take

AB = b;

from B as a centre, with a radius

BC = a,

describe an arc cutting DAD' in C. Take

CD = CD' = BC = a,

and the required roots, independently of their signs, are

AD and AD'.

Demonstration. For

AC= a/{BC2 — AB 2
)
— \/(a2 — b 2

)

and —AD =— CD+ A C— — a+ */{a 2 — b*)

— AD'—— CD'—AC——a— s/{a2 — b 2 ).

Case 4. When rn is zero, the roots are

x = and x = —%a,

which require no further construction.

Case 5. When m is negative, so that —m is positive.

Let b = \/— m, or Z>
2 = — m.

The roots become

x = — a ± s/(a2 + b 2 ),

which are thus constructed.
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Quadratic equation.

Draw (fig. 6.) the two lines AB and AC peiyen-

dicular to each other. Take

AB = a, and AC = b
;

through BC draw the indefinite line BCD'. Take

BD = BD' = AB=a,
and the required roots, independently of their signs, are

CD and CD'.

Demonstration. For

BC— */(ABz + AC*) = V(a 2 + & 2
)

and

CD — —BD + BC= — a + s/{a* + b*)

— CD — — BD'—BC — — a — s/(a* + 6 2 ).

39. Scholium. Radicals of a higher than the second

degree, and roots of equations of a higher than the

second degree, do not usually admit of geometrical

construction.

2*
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Solution of determinate problems.

CHAPTER II.

ANALYSIS OF DETERMINATE PROBLEMS.

40. Geometrical problems are of two classes, deter-

minate and indeterminate.

Determinate problems are those, which lead to as

many algebraical equations as unknown quantities
; and

indeterminate problems are those, in which the number
of equations is less than that of the unknown quanti-

ties.

41. The solution of a geometrical problem consists

of these three parts
;

First, the putting of the question into equations
;

Secondly, the solution of these equations

;

Thirdly, the geometrical construction of the algebra-

ical results.

The last of these processes has been treated of in the pre-

ceding chapter, but it must be observed that much skill is

often shown in arranging the construction in such a form, that

it may be readily drawn and be neat in its appearance.

The second process is exclusively algebraical, and the first

process, the putting into equations, is a task which, necessarily,

requires ingenuity, and can only be taught by examples. One
great object is to obtain the simplest possible equations, and

such as do not surpass the second degree. It is not unfre-

quently the case, that, when a question admits of several solu-

tions, two or more of these solutions are connected together in
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Division of line.

such a way, that the same quantity, being obviously common

to them, should, on this account, be selected as the unknown

quantity.

42. Examples.

1. To divide a line AB (fig. 7.) into two such parts, that

the difference of the squares described upon the two parts may

be equal to a given surface.

Solution. Let the magnitude of the given surface be equal

to that of the square whose side is AC, and let D be the

point of division, AD being the greater part. Let

a — AB, b =z AC, and x — AD,
we have then

BD = a — x\

and the equation for solution is

X2 __
(
a __a;)2 _ 12 .

or 2 ax — a2 = b 2 .

b 2 + a2 62
Hence x =s —^ z= f- A a.

Construction. Let E be the middle of AE. Draw the in-

definite line EB'. Take

EB1 — EB — \a,

EC — EC' = iAC=ib.
Join B 1 C, and through C" draw CD parallel to B C, D is

the point of division required.

Demonstration. We have

EB 1
: EC = EC ; ED,

or %a :lrb =%b : ED
;
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Rectangle inscribed in triangle.

whence ED = \b 2 -±- J a = -—,
&2

2?

and AD — ED + AE — ~- + J a.
' 2<2

2. To inscribe in a triangle ABC (fig. 8.), a rectangle

DEFG whose base and altitude are in the given ratio m : n.

Solution. Let fall the perpendicular AIH. Let

BC — b, AH= h
y

DE = HI=z, AI= AH—HI—h — x;

and, since n : m = Z>£ : JE^F,

_ _, W2 X
we have -Ei1 =:—

.

n

But the triangles AEF and ABC are similar, and their

bases are, therefore, proportional to their altitudes, that is,

BC: EF~ AH: AI,

mx
or o : — It : li — z.

n

Hence we find, by algebraical solution,

n b h = n+m+i)i.m h-\-nb

Construction. Find a fourth proportional to n, m, and h
t

and denote it by h', and then x is obviously a fourth propor-

tional to h' -\-b, b and h.

The following simple form has been obtained by geometers.

Draw AK parallel to BC, and take

AK — h'.

Join KC
}
and ED is the required altitude.
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Line of given length intercepted between parallels.

Demonstration. For since h', or its equal AK, is a fourth

proportional to n, m, and h, we have

n : m = h : AK,

or AK : AH =z m : n.

If we let fall the perpendicular KL upon BC, we have the

quadrilateral CFED, CAKL, which are formed of similar

triangles ; they are therefore similar, and their homologous

sides give the proportion

FE DE=z AK: KL (or AH) = m : n ;

so that FE and DE are in the required ratio.

Corollary. If the ratio m : n were that of equality, the

rectangle would be a square.

3. To draw through a given point A (fig. 9.) situated be-

tween two given parallels BC and DE a line HI, which may
be of a given length a.

Solution. Since the point is given, its distances from the

parallels must be given, which are

AF=zb, AG~c%
let AH—z)
we shall leave it as an exercise for the learner to find the value

of x, which is

a b

Construction. The value of 2; is a fourth proportional to

b -\- c, a, and b, and may be easily constructed.

The following form is quite simple. From G as a centre,

with a radius equal to a, describe an arc cutting BC in K.
Join GK, and the line drawn through A parallel to GK is

obviously of the same length with GK, and it is, therefore,

the required line.
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Circle tangent to given line.

Corollary. The problem is impossible when the length a is

less than GF or its equal b ~\- c.

4. To draw a circle through two given points A and B
(fig. 10.), and tangent to a given line DC.

Solution. Join AB, and produce AB to meet DC at D.
Let C be the point of contact, and let

DA = a, DB =.b, DC— x>

;

we have, by geometry,

DA :DC=DC:DB,
or a : x r= x : b

;

whence x =± ± \/(ab).

Construction. Find a mean proportional between a and b,

and take DC or DC equal to it, and Cor C is the point of

contact, these two values corresponding to the two different

circles BCA and BCA.
Instead of finding the mean proportional by the ordinary

process, we may find it, by drawing any arc AEB through

A and B, and' the tangent DE to this arc is, by geometry,

the mean proportional between DA and DB.

Corollary. The problem is impossible if a and b are of

opposite signs, that is, if A and B are in opposite directions

from D, one being above the line and the other below it.

Corollary. If either a or b is zero, as in fig. 11, where

DA = a rrr 0,

the problem is reduced to that of finding a circle which passes

through the given point B, and is tangent to a given line CA
at a given point A.

Construction of this case. Erect OA perpendicular to AC.

Join AB, and at the middle E of AB erect the perpendicular
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Division of a line.

EO ; O is the centre. The demonstration of this construction

is left as an exercise for the learner.

Corollary. If a and b are equal, as in fig. 12, the problem

becomes ; to find a circle which touches a given line DA at

a point A, and also touches another given line DC.

Construction. Take

DC— DC — a,

and the point O or O', the intersection of the perpendicular

OAO'
}
with the perpendicular CO or CO', is the centre of

the required circle.

5. To divide a given line AB (fig. 13.) into two such parts,

that the sum of the squares described upon the two parts may
be equal to a given surface.

Solution. Let the given surface be twice the square whose

side is AC, and let D be the point of division. Let also E
be the middle of the line, and let

BE — AE — a, AC — b, DE 'i= x.

The value of a; will be found to be

x fc ± V(6 2 — a 2
),

so that z is a leg of a right triangle whose hypothenuse is b

and other leg a.

Corollary. The problem is impossible when b is less than a

and also when

%>a,

or b 2 — a 2 > a2
,

or 6 2 >2a 2
,

or 2b 2 >ia 2
,

2 b 2 > (2 a) 2
;
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Line divided in extreme and mean ratio.

that is, when the given surface is greater than the square of

the given line.

6. To divide a given line AB (fig. 14.) at the point C in

extreme and mean ratio.

Solution. Let AC be the greater part, and let

AB == a, AC — x, CB — a — z,

we are to have

t
a : x =z x : a — x,

whence we find

x2 -\- ax — a2 — 0, and x = £ a (— 1 i \/5).

Construction. The roots of the equation

-j- a x = 0,

being constructed by case 5, art. 38, give the usual construc-

tion of this problem.

7. Through a given point C (fig. 15.) to draw a line BCD,
so that the surface of the triangle ABD intercepted between

the lines AB and AD may be of a given magnitude.

Solution. Let the given surface be double that of the given

rhombus AEFG. Draw CH parallel to AD, and CI parallel

to AB. Let

AI— CH— a, AH— CI— b,

AE = c, AD — x, AB — y.

"We have

surface of triangle = \xy sin. A = %c 2 sin. A,

whence xy

The similar triangles BHC, BAD, give

BH.HC— BA.AD,
or y — b:a = y:x;

whence xy — ay + bx.
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Given length intercepted.

The solution of these equations gives

x=:^
(

C ±\/(c 2 — ab)\

which are easily constructed.

Corollary. The problem is impossible when c 2 is less than

a b ; that is, when

c 2 sin. A < a b sin. A,

or when the rhombus AEFG is less than the parallelogram

AHCL

8. "Through a given point C (fig. 16.) to draw a line BCD,
so that the part BCD intercepted between two given lines

AB and AD may be of a given length, the point C being at

equal distances from the two given lines.

Solution. Draw CH and CI parallel respectively to AB
and AD, and they are obviously equal to each other. Let

then AH— AI— CH= CI— a, BD = b
t

AD — x, AB — y.

From triangle ABD, we have

x 2 -\- y
2 — 2 x y cos. A — b 2

;

and, from similar triangles BIC and BAD,

x y = a (x + y).

As these equations are symmetrical with regard to x and y,

they are simplified by putting

x + y — 5, .xy — t;

3
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Given length intercepted.

and become t =. as

s 2 — 2 a (1 + cos. A) s = b2 ;

whence s and t
f
x and y are found.

The following solution is, however, much neater. Join AC,
and let the angle ACD be the unknown quantity, and put

c±zAC, CAD — ^A = A', ACD = <p,

ADC= 180° — (cP + A')
9 ABC— <p — A',

sin. ADC= sin. (<r + A') ;

and, by trigonometry,

sin. ADC : sin. DAC — AC : DC,

sin. (<p + 4') : sin. A' = c : DC;

c sin. A'
Hence DC == -—-———

.

sin.((/) -j-^L
)

Also sin. ABC : sin. BAC — AC : BC,

•sin. (<p — 4') : sin. A' = c : £C;
c sin. ^4'

£C =
sin.(<p— A')'

am I ir\ A I \ >sin. (9

—

A') sin.^-^^')'

6sin.(9

—

A')sin.(ip+A')—csm.A'[s\n.(
(p-{-A')-\-sin.(cp—A')].

But, by trigonometry,

sin. (y -\- A') = sin. <P cos. A' ~\- cos. y sin. 4',

sin.
( (p — A') z=- sin. <p cos .4' — cos. <p sin. ^4';

so that

sin. (<p -f- -4.')+ s >n - (<P— A')=2 sin. ip cos. ^4'
;

sin. (<p— A') sin. ((p-\-A f

)= sin. 2 y cos. A' 2— cos. 2 ^ sin. 2 A'

= sin.2 </>(!— sin.2 ^4')— (1— sin.2 y) sin.2 ^4'
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which, substituted in the preceding equation, give

b sin.2 (p
— b sin.2 A 1 = 2 c sin. <p sin. ^1' cos. A' ;

from which we find the value of sin. ^

b sin. <p z= sin. A' [c cos. J.'± \/(6 2 -|- c 2 cos.2 A')].

Corollary. Of the two values of sin. ^, one is clearly nega-

tive ; and this value corresponds to the line CB'D', which

meets AD produced in D', so that

ft'ty- CB' + CD'^b.
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Position in plane. Origin.

CHAPTER III.

POSITION.

43. As almost all geometrical problems involve more

or less the elements of Position, it is important to adopt

some convenient method of determining and denoting

them. We shall, at first, confine ourselves to the con-

sideration of position in a plane, and then proceed to

that of position in space.

44. Problem. To determine and denote the position

of points in a plane.

Solution. The most natural method of determining the po-

sition of a point is by its distance and direction ; it is thus,

that, if a man wishes to go to any place, he starts in the

direction of the place, and proceeds a distance equal to that

of the place. Some point as A (fig. 17.) must then be fixed

upon in the plane to which all the other points B, B', &>c.

may be referred ; and the elements of position of B, B 1

, &c,
are the distances AB, AB', &,c, and the angles which AB }

AB', &c. make with some assumed direction, as that of AC,
for instance. We shall denote the distances AB, AB 1

, &c.

by r, r', &c, and the angles BAC, B'AC, &c by y, y', &>c.

45. Definitions. The point A, which is thus fixed

upon to determine the other points, is called the origin

of coordinates , or simply the origin.
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Polar coordinates. Their transformation.

The line AC is called the axis of coordinates, or sim-

ply the axis.

The distance of a point from the origin is called its

radius vector, thus r, r' &c. are the radii vectores of

B, B', &c.

The radius vector and the angle which it makes with

the axis are called polar coordinates.

When the position of a point is given, its coordinates must

be regarded as given.

Negative radii vectores are entirely avoided by regarding

the angles as counted from zero to four right angles. Thus

the coordinates of B" are not the angle CAB and — AB",
but they are AB" and — CAB',

or 360° — CAB" — 180° + CAB' = 180° + CAB.

46. It is often found in the course of a solution, that the

origin and axis which have been assumed do not furnish the

most simple results ; it is desirable, in such a case, to have

formulae by which the elements of position can be readily re-

ferred to some other origin and axis.

The referring of the elements of position from one

origin and axis to others is called the transformation of

coordinates.

47. Problem. To transform coordinates from one

system of polar coordinates to another system, which

has the same origin but a different axis.

Solution. Let A (fig. 18.) be the origin, A C the original

axis, and AC
X
the new axis. The radius vector is the same

in both systems. Let the coordinates of any point, as B, in

the first system, be
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Transformation of polar coordinates.

AB — r, and BAC — g>
j

and let its coordinates in the new system be

AB = r, and BAC
1
= <p x \

we are to find <p, in terms of y 1
.

Now let « = CAC
1

be the angle of the two axes,

we have BAC= BAC
X + CAC

X>

or tp — <p ! + «,

which is the required formula for transformation.

48. Problem. To transform coordinates from one

system of 'polar coordinates to any other system.

Solution. Let A (fig. 19.) be the first origin, and AC the

axis; and let A
x
be the new origin, and A

X
C

X
the new axis.

The coordinates of any point, as B, with reference to the

first origin and axis are

AB — r, and BAC = </>

;

and the new coordinates are

A
X
B = r lf and BA

1
C

1
= <p 1 ;

and we are to find r and 9 in terms of r
x
and y x

.

The coordinates of the new origin referred to the first

origin and axis must be known ; let them be

AA
X
== «, and A

x
AC=z p ;

the inclination of two axes must also be known, and let it be a.

Produce C
X
A

X
to A', we have

A
X
A'C = «, and AA'A

X
— 180° — «;

also AA
X
A' = A

X
A!C— A

X
AA' = « —

fi
.
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Distance of two points.

AA
X
B = 180° — (BA

1
C

1 + AA
X
A')

— 180° —
( Vl +a — fc)

cos. AA
X
B = COS. (9j + a

I

s
).

The triangle 4^1
x
# gives, then,

AB2 = A4f _f_^ ijB2__ 2.^^. a x
B. cos. ^^

X
B,

r2 = a 2 + rf + 2 a r
2

cos. (^ + a — /?)

;

r = v/[«2_|_r2^_2ar 1
cos.( 9)

1 + a—
^)] (1)

and J^ : A
±
B = sin. (A^jB) : sin. BAA lf

or r : r
2
^sin.^-)-"— /?) : sin. (<p— £)

;

whence sin. (9— /?) = ^1. sin. (<p 1 + «—^ (2)

and equations (1) and (2) are the required formulae.

49. Corollary. If the new origin is in the former axis, and
if the axes coincide, we have

« = 0, (5
= 0,

and equations (1) and (2) become

r = V(«2 + i+2flr
1

cos.
(pi ) (3)

sin. y = —i . sin. ^ r (4)

50. Problem. To find the distance of two given
points from each other.

Solution. Let B and B' (fig. 20.) be the two points whose
coordinates are respectively r </>, and rh

tp
f
. The triangle

BAB' gives

5jB /2 _ r2 _|__ r/2 _ 2r r' cos. (9'— 9),

J35' = V[>8 + r'2_ 2 r r' cos.
(9

' — <p)]. (5)
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Distance of two points.

51. Corollary. If the point B' is in the axis, we have

and (5) becomes

BB' = ^/(r2 -L. r'2 — 2 r r cos. cp). (6)

52. Corollary. If 2?' is the origin, we have

r' = 0,

and (5) becomes

as it should be.

53. Corollary. If two points are upon the same radius

vector, we have

<P' = tp
,

and (5) becomes

BB' &= \/(r2 + r'2 — 2 r r') zz= r' — r. (7)

54. Corollary. If the two points are upon opposite radii

vectores, we have

<P> = 9 + 180°,

and (5) becomes

J3J3 = \Z(^ + r'2 + 2 r r'J =V ^ r. (8)

55. Although polar coordinates are the most natural ele-

ments of position, they are not those which are usually the

most simple in their applications. It has been found con-

venient to adopt, in their stead, the distances from two axes

drawn perpendicular to each other through the origin.

The distances of a point from two axes, drawn per-

pendicular to each other, are called rectangular co-

ordinates.



§ 57.] position. 33

Rectangular coordinates.

Thus, if XAX and YAY' (fig. 21.) are the axes, the

rectangular coordinates of the points B, B', &c. are, respec-

tively,BP and BR, BP' and BR, &,c. We shall denote the

distances BR, BR 1

, &,c. from the axis YAY' by x, z', &c,
and the distances BP, BP', &c. from the axis XAX by

y, y
1

, &c.

The distances x, x', &c. may be called abscissas, to distin-

guish them from y, y', &c, which are called ordinates.

56. When the rectangular coordinates of a point are known,

it is easily found by measuring off its distance x from the axis

YA Y' upon the axis XAX, and its distance y from the axis

XAX upon the axis YAY, and the lines, which are drawn

through the points P and R thus determined, perpendicular

to the axes, intersect each other at the required point.

Since the distances x, x'', &c. are thus measured

upon the axis XAX/, this axis is called the axis of x,

or the axis of the abscissas ; while the axis YAY is

called the axis of y, or the axis of the ordinates.

57. By using the negative sign, as in art. 4, the sign

of the abscissa, or of the ordinate, designates upon

which side of the axis the point is placed.

Thus if we denote, by positive ordinates, distances

above the axis XAX', and by positive abscissas, dis-

tances to the right of the axis YAY', negative ordinates

will denote distances below the axis XAX', and nega-

tive abscissas, distances to the left of YA Y'.

Points in the quarter YAX, being above the axis XAX
and to the right of YA Y, will then have positive ordinates

and abscissas. Points in the quarter YAX, being above

XAX and to the left of YA Y, will have positive ordinates
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Polar transformed to rectangular coordinates.

and negative abscissas. Points in the quarter XA Y, being

below XAX and to the right of YAY', will have negative

ordinates and positive abscissas. Points in the quarter XAY

,

being below XAX and to the left of YAY, will have nega-

tive ordinates and abscissas.

58. Corollary. For any point in the axis XAX/ the

ordinate is zero, that is,

2/ =
is the algebraical condition that a point is in the axis

of x.

For any point in the axis YAY7
, the abscissa is zero,

that is,

x —
is the algebraical condition that a point is in the axis

of y.

The coordinates of the origin are

x = 0, y — 0.

59. Problem. To transform from polar to rectangu-

lar coordinates.

Solution. Let A (fig. 22.) be the polar origin, and AC the

polar axis. Let A
1
be the new origin, whose position is de-

termined by the coordinates

AA
X

'=. a, A
x
AC—p.

Let^LjXbe the axis of abscissas, and A
X
Y those of ordi-

nates; and let the inclination of the axis i,Jto AC be a

;

so that if the line AD is drawn parallel to A
X
X, we have

« = DAC.
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Polar transformed to rectangular coordinates.

The values of the polar coordinates

AB — r, and BAC'

—
y,

are to be found in terms of the rectangular coordinates

A
X
P = x, and BP — y.

Produce BP to P', and A
X
Y to A 1

. We have

A
X
AA! — A

X
AC—AAC = ?— «,

BAA' = BAC — A AC = <f
— «.

The right triangles A
X
AA' and BAP 1 give

A
x
A f = PF =^ j. sin. A

X
AA' — a sin. (/?— o),

^4J.
7 =: ^4_4 j . cos. ^4 j.4^4

7 =± « cos. (,s— «)

;

PP = ^i5 + PP 1 — y + a sin. (/S — «),

^4P — PA + .4 ,4 == x -f a cos. (/* — «) j

^4P 2 _ (AP'y + (JBP) 2
,

r 2 = X 2 + 2 « I' COS. (jS a) + « 2 COS. 2 (£ «),

+ y
2 + 2 a y sin. (J— a)

-f- a2 sin. 2 (/S — a),

— X 2 _)_ y 2 _j_2 a [xcoS.(pi— «) -fy.sin. (,*— «)]+a 2
,

r= x/(x2+^+ a2+ 2a[xcos.(.5_«)+ysin.(
1

5_a)])
; (9)

tang. BAP =—

,

. . y 4- a sin. ($— a)
tang. (,,_„)= f±__L__2; (10)

and formulas (9) and (10) are the required formulas.

60. Corollary. If the origins are the same, we have

a — 0,

and the formulas (9) and (10) become

r = */(z 2 +y 2
); tang, (9 — «) = ?. (11)
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Rectangular transformed to polar coordinates.

61. Problem. To transform from rectangular to

polar coordinates.

Solution. Let AX and AY (fig. 23.) be the rectangular

axes. Let A
x
be the new origin, the coordinates of which

are

AA' = a, and A
±
A' == b.

Let the inclination of the polar axis A^to the axis AX
be a; so that, if A

x
Pr

is drawn parallel to AX, we have

CA^' = a.

The values of the rectangular coordinates

AP 5± x, and BP — y,

are to be found in terms of the polar coordinates

A
X
B ~ r, and BA

X
C — y.

We have, then, in the right triangle BA
x
P't

BA
1
P = BA

1
C + CA

X
P> — <p+a,

BP' = A
X
B. sin. BA

X
P> — r sin.

( y + «),

A^1 — A^.cos.BA^'zzz r cos. (y + «)

;

whence

x = AA'+ .AP = AA' + A
1
P = a + r cos. (y+ «) (12)

y= PP-)rPB=A 1
A'+ PB = b + rsm. (<*>+ «) (13)

and (12) and (13) are the required values of x and y.

62. Corollary. If the origins are the same, we have

a = 0, and 6 = 0,

and the formulas (12) and (13) become

a; = r cos. (</> + «), y — r sin. (y -|- a). (14)
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Transformation of rectangular coordinates.

63. Corollary. If the origins are the same, and the polar

axis coincides with the axis of x, we have

« = 0,

and formula (14) becomes

x = r cos. ipj^r sin. if. (15)

64. Problem. To transform from one system of rect-

angular coordinates to another.

Solution. Let AX and A Y (fig. 24.), be the axes of the

first system ; and A
X
X

X
and A

1
Y

1
the new axes. Let the

coordinates of the new origin A
x
be

AA! = a, and A
1
A ! ±z b

;

and let the inclination of the axis A
X
X

X
to the axis AX be

ft, so that, if A
1
R I

is drawn parallel to AX
}
we have

X
X
A

X
R' = «.

The values of the coordinates

AP — %\ and BP — y,

are to be found in terms of the coordinates

A
1
P

1 =*!, and BP, —y
x

.

Draw P
X
R parallel to AX, and P

X
R' parallel to AY.

Since the sides of the angle B are respectively perpendicular

to those of the angle P
1
A

1
R', they are equal, or

B — a.

The right triangles A
X
P

X
R' and BP

X
R give

P
X
R = A

X
P

X
sin. P

X
A

X
R — x

x
sin. a,

^P'^ ^Pj cos. P
X
A

X
R' — x

x
cos. a;

P
X
R — BP

X
sin. P =y

1
sin. a,

pp = pp
x

cos. p = yi cos >
a

-
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Transformation of rectangular coordinates.

we also have

A
x
P l—A

x
R l— P'R'— A

x
R'—P

x
R— x

x
cos.a—y

x
sm.a,

BP' =z P R + BR ~ P
x
R-{-BR z=x

x
sm.*+y

x
cos.a;

AP — AA> + AP — AA' + A
X
P',

or x — a -\- x
x
cos. « — y x

sin. « : (16)

BP — PP'+ BP' — A
X
A< + BP',

or y z=. b -\- x
x

sin. « -j- y x
cos. «; (17)

and (16) and (17) are the required values of x and y.

65. Corollary. If the origins are the same, we have

a — 0, and 6 = 0;

and the formulas (16) and (17) become

x= x
x

cos. « — y x
sin. «, (18)

y — x
x

sin. « -|~ y x
cos. a. (19)

66. Corollary. If the directions of the axes are the same,

we have

a z=z 0, sin. BrO, COS. a =z 1
;

and formulas (16) and (17) become

x= a + x
x1 y = b-\-y

x
. (20)

If the new origin is, in this case, in the axis AX, we have

b — 0;

and formulas (20) become

x*=a-\-z lt y — y x
. (21)

But if the new origin is in the axis AY, we have

a — 0,

and formulas (20) become

x = x 19 y = 6 +y v (22)
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Distance of two points. Oblique axes.

67. Problem. To express the distance between two

points in terms of rectangular coordinates.

Solution. The required result might be obtained by substi-

tuting in formula (5) the values of r, r', y, and <p' obtained

from formula (11), by taking x' and y' to correspond to r' and

<p'. But it is more readily obtained by direct investigation.

Let the two points be B and P' (fig. 25.), whose coordi-

nates are respectively x, y, and %', y'. Draw BR parallel to

AX, and the right triangle BB 1 R gives

BB 2 — BR? + BR 2 = (x<— xf + (y
1— yf

BB' = */[(* - xf + (ij - yf]. (23)

68. Corollary. If one of the points B is the origin, we

have
x = 0, y = 0,

whence
AB' — */(x'2 + y'*). (24)

69. Instead of the two axes being at right angles ^o each

other, they are sometimes taken at any angle whatever ; and

instead of the distances from the axes, the lengths of lines

drawn parallel to the axes are used.

In this case, the axes and coordinates are said to be

oblique.

Thus if the axes are AX and A Y (fig. 26.), the coordinates

of B, B', &c, are, respectively,

x =z AP — BR, and y = BP = AR,
and

x'= AP 1— BR 1

, and y= .B'P' = AR', &c.

70. Problem. To transform from one system of ob-

lique coordinates to another.
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Transformation of oblique coordinates.

Solution. Let ^IXand ^4F(fig. 27.) be the original axes,

their mutual inclination being

Let the new axes be A
X
X

X
and A

X
Y

X , which are inclined to

the axis AX by the angles « and /*, so that, if A
X
P' is drawn

parallel to AX, we have

X
X
A

X
P = a, and Y

X
A

X
P — P.

Let the coordinates of A
1

be

AA' = a, and A
X
A' = 6.

The values of the coordinates

AP ±z z, and BP — y,

are to be found in terms of

A
X
P

X
=zx lt and BP, = y x

.

Draw P
X
R parallel to AY, and P

X
R parallel to AX. We

have, then,

P
X
RP — P

X
R'P> = YAX— y,

A
X
P

X
R — P

X
RP — P

X
A

X
R = /— «;

BP
X
R' — Y

X
A

X
R ac /?,

B — P
X
RP' — BP

X
R' = Y — P;

sin. A
X
RP

X
: sin. A

X
P

X
R — A

X
P

X
: A

X
R,

or sin. y : sin. (y — <*) — x. : A
X
R,

and Air^;^^±-1^ ;

sin. y

sin. A
X
RP

X
: sin. P

X
A

X
R r= vi^ : jP^

or sin. y : sin. a =z x
x

: P
X
R,

and PlR = P>Il' = *^;.
1

Sill, y
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Transformation of oblique coordinates.

sin. BR P
1

: sin. B = BP\ : P,R',

or sin. y : sin. (y — («) = y x
: P

X
R',

and P
1
R' = KP' = ^ S

'm/^--Il;
sin. 7

sin. BRP
1

: sin. ^P^' = BP
X

: .BiZ

,

or sin. y : sin. f* •== yj : jBi?',

and W^ftfo*
sin. y

AP=AA-\-AP~AA+A
l
P=AA+A 1

R+RP )

. x sin. (•/ — «) + y, 'sin. (y— ,«) ,_„,.
or a- = a H—! 5

7
,

' -
71 ^ -'

; (25)
sin. y

#P — PP' + P'B = A
±
A' + PR' + RB,

x sin. «
-f- y sin. ?

or ?/ — &-] .

' ^
: (26)J '

sin. y
v 7

and (25) and (26) are the required values of x and y.

71. Corollary. If the original axes are rectangular, we have

y = 90°, sin. y=l,
and formulas (25) and (26) become

x z=z a -\- x
x

cos. « -(- y x
cos. /?, (27)

y — b -\- x
x

sin. « + y x
sin. (?: (28)

72. Corollary. If the new axes are rectangular, we have

j* = 90° -\- «, sin. |S =— cos.' «,

sin.
(y
— (?) = sin. (y — « — 90°) == — cos.

(y — «) j

and formulas (25) and (26) become

, _ a + ;.' si"-^—Q-y,coe.(r-^>
(29)

1

sin. y

7
sin. y

4*
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Point in space. Rectangular axes.

73. Problem. To determine the position of points in

space.

Solution. The most natural method of determining the

position of a point in space is to determine the position of

some plane passing through the point, and then to determine

the position of the point in this plane. For this purpose some

fixed axis AC (fig. 28.) is assamed, and some fixed plane CAD
passing through this axis. The plane CAE, which passes

through the point B and the axis AC, is determined by the

angle EAD, which it makes with the fixed plane CAD.
The position of the point B in the plane CAB is determined

by the radius vector AB and the angle BAC, which this

radius makes with the axis. The same method may be adopt-

ed for any other points B' , B", &c, which are not given on

the figure, as they would only render it confused. We may,

then, denote these radii vectores of the points B, B' , &c. by

r, r'
t
&lc. ; the angles which these radii make with the axis

AC by (p, <p'
t
&c. ; and the angles which the planes in which

they are contained make with the fixed plane by 6,
6'

f
&,c.

74. A system of rectangular coordinates in space has

been adopted similar to those in
]
plane, and possessing

the same practical advantages of simplicity.

For this purpose three planes XAY, YAZ, and XAZ
(fig. 29.) are drawn perpendicular to each other, and the rect-

angular coordinates of a point are its distances from these

planes. Thus, if the point B is taken, and the perpendiculars

BP, BQ, and BR are drawn perpendicular to the given

planes, these distances are the rectangular coordinates of B.

If these coordinates are given, the point B is determined, by

taking

AL = BR, AM— BQ, and AN = BP,
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Projection of a point.

and drawing planes through the points L, 31, and JV parallel

respectively to the given planes, and their intersection B is

the required point.

The intersections AX, AY, and AZ of the three

given planes are called the axes.

If the coordinates of the point B are

x = AL = BR = NQ = MP,

y = AM = BQ = LP = NR,

z = AN = BP = 31R = LQ,

the axis AX is called the axis of x, AY is called the axis of

y, and AZ the axis of z ; the plane XA Y is called the plane

of xy, the plane XAZ is called the plane xz, and the

plane YAZ is called the plane of y z. The coordinates of

B', B", &c. are, in the same way,

x1 = AL', y' = B'Q', z< = L'.Q',

and
x"= AL', y" = B"Q", z" = R"Q"

S &c. &c.

75. The foot of the perpendicular let fall from a

point upon a plane is called the projection of the point

vpon the plane.

Thus the projection of B upon the plane of x y is P the
coordinates of which are x and y ; the projection upon the

plane of xz is Q, the coordinates of which are x and z * the

projection upon the plane of y z is R, the coordinates of which
are y and z.

76. Problem. To transform from, rectangular co-

ordinates to the polar coordinates of art. 73, the origins

being the same, the polar axis being the axis of x, and
the fixed plane the plane of x y.

4 «0
|
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Polar coordinates transformed to rectangular.

Solution. Let AX, AY, AZ (fig. 30.) be the rectangular

axes. Let XAD be a plane passing through the point J9y_

The values of

AL = x, BQ = y, and CQ = z,

are to be found in terms of

AB = r, BAX— <P> and DAY=z 6.

Join BL. In the right triangles ABL or BLQ, we have

the angle

because the sides LB and BQ are parallel to AD and _4 Y;

we also have

x — AL = AB cos. J5yli == r cos. </>, (31)

^X = ^41? sin. 2L1L == r sin. </>

;

y = J3Q x= -B£ cos. LBQ = r sin. y cos. a, (32)

z = XQ == BL sin. ZjBQ == r sin. <p sin. 0. (33)

77. Problem. To transform from the polar coordi-

nates of art. 73, to rectangular coordinates, the origins

being the same, the polar axis being the axis of x, and

the fixed plane the plane ofxy.

Using the figure and notation of- the preceding article, the

values of r, g>, and &, are to be found in terms of x, y, and z.

They may be immediately found from equations (31), (32),

and (33). The sum of the squares of these equations is

x2 _|_ «2 _l_ %%= r2 (cos.2 c/> -(- sin.2 y cos.2 (3 + sin.2 y sin.2 d)

== r2 [cos.2 ^ + sin.2 y (cos.2 6 + sin.2 a)]

= r2 (cos.2 9 + sin.2 y) == r2 ;

because,

1 — cos2 6 -(" sn1 -
2 3=

* cos -
2
y ~\~ s^n *

2 V



§ /y.J POSITION. 45

Distance of two points in space.

Hence

r = </(*2 + y
2 + *), (34)

and (31) gives

X X
COS. 9= = ,^ : 3 :

_ ox . (35)

The quotient of (33) divided by (32) is

sin. 6 z . _= tang, ft = -. (oo)
cos.d y

78. Problem, To find the distance apart of two

points.

Solution. Let 5, P' (fig. 31.) be the points, and P, P' their

projections upon the plane of xy. Join PP' , and draw J5£

parallel to PP . Since p, P' are two points in the plane YAX,
we have, by equation (23),

pp/2 = (i / — *) 2 + (</' — y-)
2

J

and in the right triangle BEB 1

,

BE — B'P' — BP — z—z,

BB 2 = PJE?2 + BE2 = PP 2 + JB'.E3
,

= (z'-z)2 + (y-y)2 + (z'-*)2
;

PP' = v[(*'-*)2+ (y--y)a + (*
f -*)2

]- (
3~)

79. Corollary. If one of the points, as P 7

, is the origin, we

have

x 1 = 0, y' = 0, z> == 0,

and formula (37) becomes

4J3 = V(x2 + y
2 + *2

), (38)

which agrees with equation (34).
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Projection of a line.

80. The line PP'
:
which joins the projections of the

Jwo extremities B, B' of the line BB', is called the

projection of the line BB' upon the plane of xy.

81. Corollary. If the angle B'BE, which is the inclina-

tion of the line BB' to its projection or to the plane of y x, is

denoted by x, the right triangle B'BE gives

BE = BB' cos. B'BE,
or

PP' — BB 1 cos. X;

that is, the projection of a straight line upon a plane is equal

to the product of the line multiplied by the cosine of its in-

clination to the plane.

82. If planes BPL, B'P'L', are drawn through the

extremities B, B' of a line BB'
,
perpendicular to an

axis AX, the part Eh' intercepted between these lines

is called the projection of the line upon this axis.

83. Corollary. Since

LL' =z AL' — ALz=x' — x,

the projection of a line upon an axis is equal to the

difference of the corresponding ordinates of its extremi-

ties.

The projection of the radius vector AB is AE, or

the corresponding coordinate of its extremity.

84. Corollary. It follows from equation (37), that

the square of a line is equal to the sum of the squares

of its projections upon the three rectangular axes.
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Sum of the squares of the angles made by a line with the axes.

85. Corollary. If the inclination of the line AB to the

axis AX is denoted by ip, we have, by drawing LS parallel

to AB to meet the plane B'P'L' in S,

LS = BB 1

, SLL' = j,

LL< = LS cos. SLL',

LL'= BB' cos. (p
;

that is, the projection of a straight line upon an axis

is equal to the product of the line multiplied by the

cosine of its inclination to the axis.

86. Corollary. If v is the inclination of the line to the axis

of y, and to its inclination to the axis of z, its projections upon

the axes are, respectively,

BB' cos. y, and BB' cos. a>
;

so that, by art. 82,

BB®= BB® cos.2 cp+BB'2 cos.2 y + ££'2 cos.2 w,

or, dividing by ^5 /2
,

1 = COS.2 V -{" COS.2 V + COS2 w
;

that is, fAe sm??& o/7Ae squares of the angles which a

line makes with three rectangular axes is equal to

unity

.

87. A different system of polar coordinates from that

of art. 73, is often used upon account of its symmetri-

cal character. It consists in determining the direction

of the radius vector by the angle which it makes with

three rectangular axes.
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Rectangular transformed to oblique coordinates.

88. Corollary. If the angles tp, v, and « denote the angles

which the radius vector makes with the axes of x, y, and z,

we have, by arts. 83 and 84,

x — r cos. <p, y z= r cos. i//, z =± r cos. to
; (39)

cos. 2 g> -]- cos. 2 v -f- cos. 2 w = 1,

which will serve to transform from rectanglar to polar

coordinates in the system of the preceding article.

89. Oblique coordinates are sometimes used similar to

oblique coordinates in a plane ; thus, if the axes AX, A Y,

and AZ (fig. 29.) had been oblique to each other, and the

other lines drawn parallel to the axes, the point B would be

determined by the oblique coordinates

AL = x, LQ = y, QB = z ;

and, in the same way, for other points B', B", &c.

90. Problem. To transform from rectangular to ob-

lique coordinates.

Let AX, AY, AZ, (fig. 32.) be the rectangular axes, and

A
1
X

1 , A 1
Y

1 , A 1
Z

1 , the oblique axes. Let the coordi-

nates of the new origin be

AA 1 = a, A
1
A" — b, A 1A" == c

;

and let the inclination to the axes AX, AY, and AZ of those

axes A
X
X

X
be, respectively, «, a', a"', let those of the axis

A
1
Y

1
be |S, p, ?"; and those of the axis A

1
Z

1
be y, /, /';

these angles must be subject to the condition of art. 84
;

that is,

COS. 2 a -|- COS. 2 "' -|- COS. 2 <*" = 1,

COS. 2 ,*
-f- COS. 2 /*'

-f- COS. 2 '?' = 1,

cos. 2 y -j- cos. 2 y' -(- cos. 2 y" ztz 1.
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Oblique transformed to rectangular coordinates.

The values of the rectangular coordinates

AL = x, BQ = y, LQ = z,

are to be found in terms of

A
X
L

X
=x

L , BQ 1
= y x , L x Q t

=z
1

.

Let L' and Q be the projections of the points L
x
and Q x

upon the axis of z. Since A'L'
t
L'Q\ and Q'L are the

projections, respectively, of A
x
L lt L 1 Q 1 , and Q X

B, upon

the axis of x ; and A
r
L ±) Q 1

B, and L
1 Q 1 , are respectively

parallel to the axes of x lt y lt and z.
f
and, therefore, inclined

to the axis of x by the angles *, (f
3
and v, we have

A'L' = A
1
Ii

1
COS. a = Xj COS. or,

Q'L = Q X
B cos. (? = ajf, cos. ft

£'Q' = ijQj cos. / = Zj cos. y ;

so that

^i =: AA' + 4'Z' + Q'L + ZQ'
gives

x = a -\- z
x

cos. a -\- y x
cos. /s -[~ *i cos - * (40)

In the same way we might find

y = 6 -f- *i cos
- « H~ #i cos-

|S ' + %
i
cos - "/• (^1

;

2=c-f x
i
cos

- «"+ #i cos -
•*"+ z

i
cos

-

y//
5 (4-)

so that equations (40), (41), and (42) are the required equa-

tions.

91. Corollary. If the new axes are also rectangular, equa-

tions (40), (41), and (42) may still be used, but the angles

«» /*» Y >
a'y ?'> y't a"> ?"> an(^ Y" W*M be subject to certain con-

ditions, which are thus obtained. Let r be the radius vector

drawn from A
x

to B, and let the angles which r makes with

5
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Angle of two lines.

the axes AX, AY, AZ, A
1
X

1
, A

X
Y

X , A
1
Z

X , be re-

spectively (p, yj, o), v lt y lt W j, we shall have, by art. 83,

x — AL = AA' -\- A'L = a -f- r cos. ^,

x
x
— r cos. y 1 , y x

= r cos. V x , z
x
— r cos. Wj

;

which may be substituted in equation (40). If, in the result,

we suppress the common term a, and the common factor r, we

have

COS. <p = COS. a cos. (p
x

-)- cos. p COS. v j + cos. y cos. a, x ; (43)

which expresses the angle cp made by two lines, one of

which is inclined to the three axes of x
x , y x

, z
x

, by the

angles «, /*, y ; and the other by the angles <fi, Vi> »i«

This formula may then be used for determining the angle

which any two lines make with each other, and which are

inclined to the axes of z, y, z by given angles ; to determining

the angles, for instance, which the axes of x
x , y x

, z
1
make

with each other. But these axes are perpendicular to each

other, and therefore we have for the angles of x
x
and y x , of

Xj and Zj, of y x
and z

x
, respectively,

cos. 90° == = cos. « cos. /? -|- cos. a1
cos. p? -\- cos. a" cos. p' 1

, ( . 4)

cos. 90°— =. cos. a cos. y -\- COS. «' COS. y'-[~ cos. «" COS. Y
l!

, (45)

COS. 90°= = COS. (5 COS. Y+ COS. ?' COS. y'+ cos. |*" cos. y". (46)

92. Corollary. By applying the preceding formulas to the

axes of x, y, z, referred to those of x
x , y x , z

x , we have

cos. 2 « + cos. 2
i

5 + cos. 2 y — 1, (47)

cos . 2 a' -j_ COS. 2 F + COS. 2 y' = 1, (48)

cos. 2 a"
-f- cos. 2 r _[_ cos. 2 y"= 1

;

(49)
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Change of origin.

COS. a COS. a'
-f- COS. p COS. p' -f- COS. y COS. y' = 0, (50)

COS a COS. a" -\- COS. p COS. p" -f-
COS. y COS. y" z= 0, (51

)

COS. a ' COS. «" -|- cos. p' COS.
(

«" -}- COS. y' COS. y"= 0. (52)

93. Corollary. If the origin is changed, but not the direc-

tions of the axes, we have

a — 0, p — 90°, y = 90°,

a — 90°, /J' =0, y' — 90°,

«"z=90°, P"— 90°, y"= 0;

and equations (40, 41, 42) become

x—a-\-x
x (53)

#=& + #! (54)

*=* + *,. (55)
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Loci. Angles.

CHAPTER IV.

EQUATIONS OF LOCI.

94. When a geometrical question regarding position

leads to a number of equations less than that of the

unknown quantities, it is indeterminate, and usually

admits of many solutions • that is, there are usually a

series of points which solve it, and this series of points

is called the locus of the question, or of the equations to

which it leads.

95. The equation of the locus of a geometrical ques-

tion is found by referring the positions of its points to

coordinates, as in the preceding chapter, and expressing

algebraically the conditions of the question.

96. Scholium. Instead of denoting angles by degrees,

minutes, &c. ; we shall hereafter denote them by the

lengths of the arcs which measure them upon the cir-

cumference of a circle whose radius is unity, and shall

denote by n the semicircumference of this circle, which

is nearly 3-1415926.

The angle^of 90°, or the right angle, is thus denoted by

J n, the anglfc of 180°, or two right angles, by tt, and the

angle of 360°, or four right angles, by 2 ™
t

97. Corollary. The arc which measures an angle 6 in the
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Circle.

circle whose radius is R is R 6, because similar arcs are pro-

portional to their radii, and 6 *is the length if the radius is

unity.

98. Examples.

1. Find the equation of the locus of all the points

in a plane, which are at a given distance from a given

point in that plane. This locus is the circumference of

the circle.

Solution. Let the given point A (fig. 33.) be assumed as

the origin of coordinates, and let R = the given distance.

If the polar coordinates of art. 44 are used, we have for

each of the required points, as M
}

r = R; (56)

so that this equation is that of the required locus.

Corollary 1. Equation (56) is the polar equation of

the circle whose radius is R, and centre at the origin.

Corollary % Equation (56) may be referred to other polar

axes by arts. 48 and 49. Thus for the point A xt for instance,

for which

AA
X

==. a = — R „

equation (3) becomes

r = x/(R* +r\—ZRr 1
cos. 9l )

which substituted in (56) gives, by squaring and reducing,

r\ — 2 Rr
x

cos. (p
x
= ;

or we may divide by r
lt since r

x
is not generally equal to

zero, and the equation is

r
x
—2Rcos. y

x (57)

5*
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Circle.

which is the polar equation of a circle whose radius is

R, the origin being upon the circumference, and the

line drawn to the centre being the axis.

Corollary 3. Equation (56) may, by art. 60, be referred to

rectangular coordinates; and equations (11) being substituted

in (56), and the result being squared, we have

X 2 -f y2 ~ R2 (58)

which is the equation of a circle whose radius is R,

referred to rectangular coordinates, the origin of which

is the centre.

Corollary 4. Equation (58) may, by art. 66, be referred to

any rectangular coordinates. Thus the axes A 2 X2 , A 2 F2 ,

for which the coordinates of A are A 2 A 1 and AA'
t so that

a = — A 2 A' = — a',

b = — A A' = — b',

give

x = x 2 — a>, y = y2
— b !

,

which, substituted in (58), give

(*, - aV + to - *r = R2
< (59)

which is the equation of a circle, referred to rectangular

coordinates, the radius of the circle being R, and the

coordinates of the centre of and b'.

Corollary 5. For the point A
t
we have

a' = R, b' = 0,

so that for this point (59) becomes

(i,— B)«+y» = R»,

or x\ — 2Rz
t + R 2 -\-y\ = R*

y2=2Rz,—x\, (60)

1) & •+
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Sphere.

which is the equation of a circle, whose radius is R,

referred to rectangular coordinates, the origin of which

is upon the circumference, and the axis of x
1
is the

diameter.

2. Find the equation of the locus of all the points in

space, which are at a given distance from a given point.

This locus is the surface of the sphere.

Solution. Let the given point be assumed as the origin of

coordinates, and let

R = the given distance.

If polar coordinates are used, we have for each of the re-

quired points

r = R, (61)

which is, therefore, the polar equation of a sphere,

whose radius is R, and centre at the origin.

Corollary 1. Equation (61) may be referred to rectangular

coordinates, by art. 77 ; and if equation (34) is substituted in

(61), and the result squared, we have

X 2 _|_ y
2 _j_ Z 2 = R2 .

(62)

which is the equation of the sphere whose radius is

R, referred to rectangular coordinates, the origin of

which is the centre.

Corollary 2. Equation (62) may, by art. 93, be referred to

any rectangular coordinates, and the substitution of equations

(53, 54, 55) in (62) gives

(*i + <0
2 + &, Jr &)

2 + (*, + c? = * 2
> (63)

v)hich is the equation ofa sphere referred to rectangular
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Ell] pse.

coordinates, the radius of the sphere being R, and the

coordinates of the centre — a, — b, and — c.

3. Find the equation of the locus of all the points

in a plane, of which the sum of the distances of each

point from two given points in that plane is equal to a

given line. This locus is called the ellipse, and the

given points are called its foci.

Solution. Let F and F (fig. 34.) be the foci, let F be the

polar origin, let the line FF joining the foci be the polar

axis, and let

2c = FF' === distance between the foci,

2 A = the given length
;

where the length A is not to be confounded with the point A
of the figure.

If, then, we put in equation (6)

r' = FF' = 2e,

we have for the distance MF' of each point M from F'
t

MF' = \/(r2 -f 4 c2 — 4 c r cos. y)

;

so that

FM+ MF' = 2 A =r +V(r2-)-4c 2 — 4crcos.y)

\/(r 2
-f- 4 c 2 — 4tcr cos. y) = 2 ^4 — r,

and squaring and reducing

4c 2 — 4 c r cos. fp = 4 A2 — 4ir

(-4.—; c cos. </>) r = A 2 — c 2

r = 4 —

.

(64)
^4— c cos. /n
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Ellipse. Transverse axis.

which is the polar equation of the ellipse, one of the foci

being the origin, and the axis being the line joining

the foci, which is called the transverse axis, if it is pro-

duced to meet the curve.

Corollary 1. For the point C where the ellipse cuts the

axis, we have

cp =z 0, COS.
(f

z=z 1,

42 c 2FC—r= —A
=A + c.A— c

'

Corollary 2. For the point C, where the ellipse cuts the

axis produced, we have

(9 = TV, COS. (p =z lr

A 2 f2FC=r = A
A ,

= A — c.A -\- c

CC = FC+FC = 2 A;

so that the transverse axis is equal to the sum of the

distances of each point of the ellipsefrom the two foci.

Corollary 3. If FF' is bisected at A, we have

AF— AF' — c,

AC— FC—AF=zA + c—c = Az=iCC'=iAC /

;

A is called the centre of the ellipse.

Corollary 4. If we put

B2 = A 2 — c2
,

(64) becomes

B 2

r = —-
. (65)A— c cos. 9



58 ANALYTICAL GEOMETRY. [b. I. CH. IV.

Ellipse. Eccentricity.

Corollary 5. If we put

e __ 2c

e is called the eccentricity of the ellipse, and is the ratio

of the distance between the foci divided by the transverse

axis.

Hence c — A e,

and this, substituted in (64), gives

. = A» (!-«») = A(l-e*)
_A (I — e cos. </>) 1 — e cos. y

If we also put

FC — P ~A— c — 4(1— e),

(66) may be put in the form

A{l—e)(l+e) P{l+e)
1 — e cos. ip 1— ecos.

(6?)

Corollary 6. The equation of the ellipse may be referred

to rectangular coordinates by arts. 59 and 60. Thus, if we

take the point A for the origin, and AC for the axis of x, we

have

a —: FA — c,

a — ? — 0, sin.
(p
— «) = 0, cos. (/?— «) = 1 .

whence (9) and (10) become

r = x/(*
2+ 3/

2+ c2 + 2 c x)

,
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Ellipse. Conjugate axis.

and

1 1 x + e

sec. q>
~ V(l+ tan.2 y)

~ V(^2+2cx+c2+x2
)

x 4- c
cos. (p — ——

:

r

r cos. <p — x -f- c.

Now equation (64) freed from fractions is

A r — cr cos. 9 = A 2— c 2
;

in which, if we substitute the preceding values, we have

As/{x 2 -ir y2-irC 2 _|_ 2 c z) — c s— c 2 —A 2— c2 ,

or

A\/{x 2 + y
2 + c 2 + 2 c x) — A 2 + c x.

The square of which is, when reduced,

A 2 x 2 + A 2 y 2 + ^ 2 c 2 = 4* _|_ C 2 ^V

or

(^2 _ C 2) a;2 ^ ^2 y
2 _ ^4_ ^2 c 2 — £2 (^2_ c2^

or substituting _B 2

£ 2 x 2 + ^4 2 y 2 — 4 2 jB 2
; (68)

which, divided by A 2 B 2
, is

x 2 II 2

A*+h= h
<
69

>

Corollary 7. The part 5B' of the axis of y included

within the ellipse is called its conjugate axis.

We have for the points B and B', art. 58,

x — 0, y = AB or = — 4.B'

;
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Ellipse. Conjugate axes.

which, substituted in (6S), gives

A2 y' 2 = A 2 B 2
,

y' = d= B — + jBor = — .B;

so that ^4J5 == ^4.8' = B,

and 5 «s equal to the semiconjugate axis.

Corollary 8. Equations. (68) and (69) are the equa-

tions of an ellipse referred to rectangular coordinates,

the centre of the ellipse being the origin, the transverse

axis 2 A being the axis ofx, and the conjugate axis 2 B
being the axis of y.

Corollary 9. The equation of the ellipse may, by art. 71,

be referred to oblique axes. Thus, if the origin is unchanged,

we have
a = 0, 6 = 0,

and equations (27) and (28) become

X = X
x

COS. a -}- y ^ COS.-/?,

y = % sin. a -\- y ±
sin. p;

which, substituted in (G8), give, by simple reduction,

(B2 cos. 2«+A2 sin.2 «)x f-j-2(B 2 cos.« cos.j?-fA2 sin.« sin.?) z
yy ,

+ (£2 cos.2 1?+ A2 sin.2 (?) y J = A2B2
(70)

Corollary 10. If " and /», instead of being taken arbitra-

rily, are so taken that we have

B2 cos. « cos. /? + A2 sin. a sin. £ = 0, (71

)

or A2 sin. « sin. P = — B2 cos. « cos. /?,

or, dividing by A2 cos. a cos. /?,

S 2

tang. « tang. /? = ——

,

(72)

the axes are said to be conjugate to each other.
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Conjugate diameter.

Equation (70) is then reduced to

(JB2cos.9«+JL2sin.2«)x2-f(JB2cos.^+^2sin.^)yf_^2jB2. (73)

Corollary 11. If C
1
AC\ (fig. 35.) is the axis of x^ and

B
X
AB\ is the axis of y x , we have for the points C

x
and C'

x ,

where the axis of x
x
meets the curve

y x
~ 0, x\ — AC

X
or — AC

X ;

which, substituted in (73), give

(B2 cos.2 « -f A* sin.2 «) *;§ — ^2^2

AB
«i==db

\/(,B 2 cos. 2 a -\-A 2 sin. 2 «)
5

so that the distances AC x
and AC\ are equal, and in

general any line, which passes through the centre and

terminates in the curve, is bisected, and is hence called

a diameter. The axes of x
x
and y x , which are sub-

ject to the condition of equation (71) or 72), are called

conjugate diameters, and equation (73) is the equation

of the ellipse referred to conjugate diameters, which are

inclined by the angles a and P to the transverse axis.

Corollary 12. If we take

B —AB, == AB
we have

A 1 —

B =

i

'

AB
V(^2 COS.2 «-j-^2 smi 2 a)>

AB
t

V(£2 cos.2 p + A2 sin.2 p)
'
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Hyperbola.

so that

AB
\/(B 2 cos. 2 « + A 2 sin. 2 «) =—

-

\/{B 2 cos. 2
p + A 2 sin. 2 /?) = .4B

which, substituted in (73), and the result divided by ^4 2jB 2
,

give

A'2 ' # 2

or

JB 2 z 2 + ^1 /2
«/
2 = A' 2 B 2

; (75)

which are, therefore, precisely similar in form to equa-

tions (68) and (69) ; and they are the equations of the

ellipse referred to the conjugate diameters 2 A' and

%B'.

4 Find the equation of the locus of all the points in

a plane, of which the difference of the distances of each

point from two given points in that plane is equal to a

given line. This locus is called the hyperbola, and the

given points are called its foci.

Solution. Let F and F (fig. 36.) be the foci, let F be the

polar origin, let the line FF' joining the foci be the polar

axis, and let

2c ~ FF' = the distance between the foci,

2 A = the given length.

If we put, in equation 6,

r' — FF' = 2 c,

w,e have, for the distance of each point M from F\

MF 1 = \/{r2 -f 4 c 2 — 4 c r cos. <p) ;
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Polar equation of hyperbola.

so that

MF— MF' = 2 A — r— x/(r2-j-4c2— 4 cr cos. y),

\/( r2 -|- 4 e2— 4 c r cos. (?) —r — % A.

Squaring and reducing, we have

4 c 2 — 4 c r cos. </> = — 4ir-|-4 ^4 2

(A— c cos. 9) r = ^4 2 — c 2

A 2 — c 2 c 2— A 2

r=-A
= -\ (76)A— c cos. (p c cos, cp—A v

'

which is the polar equation of the hyperbola, one of the

foci being the origin, and the axis being the line xohich

joins the foci, the part of which CO', intersected by the

curve, is called the transverse axis.

Corollary 1. If equation (76) is compared with (64),

it appears that these equations have the same form, and

only differ in the circumstance, that c is Jess than A for

the ellipse, and greater than A for the hyperbola. In

the ellipse, then, the value of r is always positive, be-

cause tne numerator A*— c2 is positive, and so is the

denominator A— c cos. cp. For c cos. y is less than c,

and therefore less than A. But in the hyperbola, while

the numerator c2 — A? is positive, the denominator

c cos. cp — A is only positive when

c cos. cp > A,

A
or cos. cp > —

.

c

A
If then we take cos. cp = —

, 9 must be confined to

the limits <p and — cpo.
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Polar equation of hyperbola.

Corollary 2. The above solution is limited to the

hypothesis, that FM is greater than F' M, but if it

were supposed less, we should have the equation of

another curve situated with reference to the foci F'

and F precisely as the curve of equation (76) is with

regard to the foci F and F'

.

Since both these curves satisfy the conditions of the

problem, they are included in the common name of

an hyperbola, and are called its branches.

To find the equation of the second branch referred to the

same polar coordinates as those already used, we have

F'M
1
—FM

1
= 2A = V(r2 + 4 c 2 —- 4 cr cos. 9>)— r,

\/(r 2
-f- 4 c 2 — 4 c r cos. <p) — 2A-\-r.

Squaring and reducing, we have

c 2 — cr cos. cp = A 2
-f- A r,

(A -f- c cos. y)r = c2 — A 2
,

* 2 —A 2 =

r = IT i
» (

77 )A + c cos. <p
v '

which is the polar equation of the branch CM lt the

focus F being the origin, and the line joining the foci

being the axis.

Corollary 3. The numerator of equation (77) is posi-

tive, but the denominator is negative, when

A + c cos. <p< 0,

c

or cos. 9 < j,

or cos. <p< — cos. 9
;
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Transverse axis of hyperbola. Centre.

or when 9 is included between the limits n — g> and
n + ^oj so tnat 9 mus t not be taken between these

limits.

Corolla?-?/ 4. For the point C, where the first branch of the

hyperbola cuts the axis, we have, by equation (76),

cp = 0, COS. (p zzz 1,

c 2 A2
FC=r= - c + A .

Corollary 5. For the point C, where the second branch

cuts the axis, we have, by (77),

<P
= 0, COS. (p z=z 1,

c 2 a 2

FC'=r =
,

" = c — A.
c + A

Hence CC — FC— FC = 2 A
;

and the transverse axis is equal to the difference of the

distances of each point of the hyperbola from the two

foci.

Corollary 6. If FF' is bisected at A, we have

AF — AF> = c,

AC — AF—AC= A + c— c= A = JCC= .4C.

J. is called the centre of the hyperbola.

Corollary 7. If we put

B2 = c* —^
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Conjugate axis of hyperbola. Eccentricity.

(76) and (77) become

c cos. cp— A

A-\- C COS. y

(78)

(79)

If this value of B2
is compared with that of the ellipse

of corollary 4. we see that it is, in form, the negative

of it.

2 B is called the conjugate axis of the hyperbola, and

is laid off upon the line BAB' drawn through the cen-

tre perpendicular to the transverse axis, taking

AB = AB' — B.

Corollary 8. If we put

c 2c 1
e = -A = 2ri

= -^v >

= sec'^

e is called the eccentricity of the hyperbola.

We have c — e A,

and this, substituted in equations (76) and (77), gives

*(>-«») ^("-i)
(80)

1 — e cos. (p e cos. y— 1

A(e 2 — 1)
r =r -.

e cos. q> -\- 1

If we take

P — FC = c — A = A (e — 1),

(81)
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Rectangular equation of hyperbola.

these may be put in the form

P(l+e)
r := =

e cos. cp — 1
(82)

r=-P(l + '
)
.. (83)

e cos. (p -\- 1
'

Corollary 9. If we draw ECE perpendicular to CC'
t

and make *-4E* ~»^
CE = C£; = ^F = AF< — A

we have

AC c
cos. jELIC= cos. E'AC = —= = —,

— COS. (p
Q .

Hence -EMC= E'AC = <P 0>

and JJj^C^ztt: —
y Qi

E
X
AC =Z TV -f- (po-

CE — */(AE2 — AC3
) = \/(A2 — c2 ) = B.

Corollary 10. The equation of the hyperbola may be re-

ferred to rectangular coordinates by arts. 59 and 60. But

since equation (76) differs from the equation (64) of the

ellipse only in regard to the value of c, this equation may be

referred to the rectangular axes CAC and BAB 1

, by the very

same formulas as in corollary 6 upon the ellipse, and we
shall have

(A 2 — c 2 ) x 2 +A 2
y
2 = A 2 (A 2 — c2 ),

or, substituting B 2
,

—B 2 z 2 +A 2
y
2 =z — A 2 B2

, (84)

which, divided by — A 2 B 2
, is

%2 y
2 - 1 tanA?~B*- L (85)
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Hyperbola referred to oblique axes.

With regard to equation (77), since it may be deduced from

equation (76), by changing c into — c, or — c into c, it may
be referred to rectangular coordinates by the same process,

and the corresponding result may be deduced by changing in

that for (76) c into — c. Since, however,

C 2 = (—c) 2
,

the result is the same in both cases.

Equations (84) and (85) are, then, the equations of

both branches of an hyperbola referred to rectangular

coordinates, the centre of the hyperbola being the origin,

the transverse axis being the axis of x, and the conju-

gate axis being the axis of y.

Corollary 11. If we wished to find the point where the

curve meets the axis of y, we should have for these points

x — 0,

so that the corresponding value of y would be

(^4 2 i32 \
jr2-) = */-B* = ±Bs/-\,

which is imaginary, and there are no such points.

Corollary 12. The equation of the hyperbola may, by art.

71, be referred to oblique axes. If the origin remains at A,

the result is the same as that of corollary 9 for the ellipse, by

changing B 2 into — B 2
. By this change (70) becomes

(A2 sin2 a—B~ cos.2«)x 2 -|- 2(^12 sin . a sin./S—JB2cos. « cos.,?)*
xy x

+ (A 2 sin. 2 /*— B 2 cos- 2
(*) y\ = — A 2 B 2

. (86)
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Hyperbola referred to conjugate diameters.

Corollary 13. If <* and p are so taken, that

A 2 sin. a sin. P — I? 2 cos. « cos. /? = 0, (87)

I? 2
or tang. « tang. ? =-— (88)

the axes are said to be conjugate to each other ; and equation

(86) becomes

(42 sin.2a-JB2cos.2«)x2+(^L2sin.2
/

5-J52 cos.2
1
5)?/

2=—^ 2jB 2 (89)

Corollary 14. It may be proved precisely as in corollary 11

for ellipse, that a line drawn through the centre to meet the

curve at both extremities is bisected at the centre, whence it

is called a diameter. If such a diameter is assumed for the

axis of x, and if we denote it by A 1

, we have

A,= AB
\/(B 2 cos. 2 «— JL 2 sin. 2 «)

and if we take

ABB
\/(A 2 sin. 2 ? — B 2 cos. 2 /*)

we have

A 2 B 2

A 2 sin. 2 a — B 2 cos. 2 p == ,A12 '

A 2 Tt2A 2 sin. 2 p — B 2 cos. 2
/5 — - -^ -

,

which substituted in (89) give, by dividing by —

A

2 B 2
,

T 2 II 2

or

—Bl2
%\ + Al2

y
2 — —A 2 B' 2

i (91)

which are the equations of the hyperbola referred to

conjugate diameters.
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Parabola. Polar equation.

5. Find the equation of the locus of all the points

in a plane so situated, that the distance of each of them

from a given point is equal to its distance from a given

line. This locus is called the parabola, the given point

its focus, and the given line its directrix.

Solution. Let the given point be (fig. 37.) assumed as the

origin of polar coordinates, and let the perpendicular AF to

the given line EQ be produced to X, and let FX be the

polar axis. Let

BF= 2 P.

Draw the perpendicular MP ; we have

r — FM— Q31 = BP
FP z= r cos. q>,

so that

r cos. <p = BP — BF—r — 2P
r — r cos. (p — 2 P

2 P
r = -r-^- , (92)

1 Cos. cp

which is the polar equation of the parabola, the origin

being the focus, and the axis the perpendicular from

the directrix.

Corollary 1. If equations (67) and (92) are compared to-

gether, it is evident that (92) is what (67) becomes, when

e— 1.

Corollary 2. For the point A where the curve meets the axis

we have

(p — TV , COS. (p = — 1

r — FA — \1P — P
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Parabola referred to rectangular axes.

The point A is called the vertex of the parabola, and is

just as far from the focus as from the directrix.

Corollary 3. The equation of the parabola may be referred

to rectangular coordinates by arts. 59 and 60. If we take

the vertex A for the origin, we have

a ~ FA — P
a = 0, $ •= n,

sin. (? — «) == 0, cos. (/* — o) == — 1

;

whence (9) and (10) become

r = s/(x 2 -\-y 2 — 2Pz + P 2
)

tang. 9 =^p
1 x — P %—P

COS.
a/(I +tan. 2

cP
)~

/V/(j/
2_|_ a;

2_2Px+P 2
)

r cos. — x — P.

Now equation (92), freed from fractions, is

r — r cos. ? = 2P,

in which, if we substitute the preceding values, we have

^/(y 2 _|_ a;2 _ 2 P a: + P2
)
— x + P = 2 P

\/(*/
2 + z 2 — 2Px-\- P 2

) = P + x;

which squared and reduced gives

f = 4Pa;; (93)

which is the equation of the parabola referred to rect-

angular coordinates, the origin being the vertex, and P
its distance from the focus.
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Parabola referred to oblique axes.

Corollary 4. The equation of the parabola may be referred

to oblique axes, by art. 71. If the axis of x
x

is taken parallel

to x, we have

« = 0, sin. a = 0, COS. « = 1,

and (27) and (28) become

x = a-\-x
x +y 1

cos. /s

V — hJrVi sin
- P'>

which, substituted in (93), give

y
2 sin.2 /? + (2 b sin. p— 4Pcos.P)y

1

+ 62 -4Pa= 4Pz
1

. (94)

Corollary 5. If the new origin is taken at a point A
x
upon

the curve, we have, by equation (93),

6 2 = 4Pfl,

which reduces (94) to

y\ sin. 2 i*
-L. (26 sin. /s— 4 P cos. (?)y 1

= 4Pz
1 (95)

Corollary 6. If the inclination (9 is taken so that

2 6 sin. p —• 4 P cos. ?z:0,

2P
or tan. p =z —-, (96)

(95) becomes

And if we put

(98) becomes

y\ sin. 2 |5z= 4Pz
x (97)

4P
sin. 2 P

*

'

rt^J£?*i> (
98

)

p
Pl = o > (")1

sin. 2 /s

'

-

v J

y? = 4P
1
x

1
. (100)



§ 98.] EQUATIONS OF LOCI. 73

Prolate ellipsoid of revolution.

The axes, determined by the equation (96), are said

to be conjugate to each other, and (100) is the equation

of the parabola referred to conjugate axes.

6. To find the equation of the surface described by

the revolution of the ellipse about its transverse axis.

This surface is called that of the prolate ellipsoid of

revolution, which is the included solid.

Solution. Let CMC (fig. 34.) be the revolving ellipse.

If we use the notation of the 3d problem and solution, and

let F be the origin of the polar coordinates in the system of

art. 73, and the axis of revolution the polar axis, it is evident

that the distance F31 of each point from the origin, or any

other point of the axis, remains unchanged during the revolu-

tion of the ellipse. The value of r is then independent of 0,

and depends only upon the angle y, which it makes with the

axis. Hence the equation (64) of the ellipse determines the

value of r for every value of <p and every position of the re-

volving ellipse.

It is, then, the polar equation of the prolate ellip-

soid.

Corollary 1. The equation of the ellipsoid may, by art. 77,

be referred to rectangular coordinates. Thus, if in equation

(64) freed from fractions we substitute

r = V(z 2 +3/ 2 + * 2
)

r cos. <p z=z z,

we have

Aa%/(x2 -f-y2 _j_ 22) _ CZ= i2- C 2 (101)

r
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Ellipsoid of revolution.

Corollary 2. This equation may, by art. 90, or 93, be re-

ferred to other rectangular axes. Thus, if the origin is

changed from JF to A, we have for the a, b, c, of art. 93,

a = FA = c, 6 = 0, c = 0,

whence

x — x
i + c

> y — y^ 2==*ii

which, substituted in (101), give

^/[(*i+«) 2 +y?+*?]=^ 2—

c

2+«(*i+0=^ 2+'*i-

Squaring and reducing, we have

(A 2— c 2 )x\-\-A 2
(y

2 + z2 ) — A2 (A 2 — c 2
) ;

and substituting the B 2 of corollary 4 of the ellipse

B 2 x\ + A 2
y
2 + A 2 z2 — A 2 B 2

, (102)

which, divided by A 2 B 2
, is

nr-2 1/2 22

f*+W + m = ''
<
,03

>

which is the equation of the prolate ellipsoid of revolu-

tion referred to its centre as the origin, the axis 2 A of

revolution being the axis of x x
.

7. To find the equation of the surface, generated by

the revolution of the ellipse, about its conjugate axis.

This surface is that of the oblate ellipsoid of revolution.

Solution. If we take the centre A (fig. 38.) of the ellipse

whose transverse axis is

CC = 2 A,

and conjugate axis

BB' = 2 B
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Oblate ellipsoid of" revolution.

for the origin of rectangular coordinates ; the equation of this

ellipse is

ll _L Hi — 1

A? "t" B*
~~

When it revolves about the axis BB' the distances MR and

AR remain unchanged. Let x lt y lf z
x
be the coordinates of

the point 31 of the required surface, BAB' being the axis* of

sEj. We have

AR = x
x

.

Now the distance of the point M from the point P is, by

art. 78,

MR^^[(x
1
-x

1
)2 + y2 +z 2

]
= x/{y 2 +z2y

But MR and AR are the same with coordinates AP and

MP, or x and y of the point M in the plane of the ellipse

;

so that, for this point,

y = x xi x = MR=*/(y2+z2),

which, substituted in the equation of the ellipse, give

1+3 + 1=1; d04)

which is the equation of the oblate ellipsoid of revolution

referred to its centre as the origin, the axis 2 B of revo-

lution being the axis of xv

8. To find the equation of the surface formed by the

revolution of the hyperbola about either its transverse

or its conjugate axis. This surface is that of the

hyperboloid of revolution.
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Hyperboloid and paraboloid of revolution.

Solution. By reasoning exactly as in the preceding solution,

we find

f!_ll_*- = i (105)
42 B2 B 2 K '

for the equation of the hyperboloid of revolution referred

to its centre as the origin, the transverse axis 2 A being

the axis of x and also the axis of revolution,

and we find

x2 v2 z2

-z^+i* + -^ = l <
106

>

for the equation of the hyperboloid of revolution referred

to its centre as origin, the conjugate axis 2 B being the

axis of x, and also the axis of revolution.

9. To find the equation of the surface generated by

the revolution of the parabola about its axis. This

surface is that of the paraboloid of revolution.

Solution. By reasoning exactly as in the preceding solu-

tions, we find

y2 -\-z2 = 4Px (107)

for the equation of the paraboloid of revolution referred

to its vertex as origin, the axis of revolution being the

axis of x.

10. To find the equation of the straight line in a
plane.

Solution. Let AB (fig. 39.) be the line, let any point A in
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it be assumed as the origin of polar coordinates, and let the

polar axis be AX, which is inclined to BA by the angle

BAX— x.

For every point M of this line we have, then,

9 = MAX— 2;

so that tf == x (108)

is the polar equation of a straight line, which passes

through the origin, and is inclined to the axis by the

angle *.

Corollary 1. The equation of the axis is

<P = 0.

Corollary 2. The straight line may be referred to rectan-

gular axes by art. 60, and if the axis of x is that of AX,
(11) gives

tang, x =z ¥-, (109)

or y = % tang, x

;

(1 10)

which is the equation of the straight line, which passes

through the origin, and is inclined to the axis of x by

the angle *.

Corollary 3. For the axis of x

x = 0;

so that y = (111)

is the equation of the axis of x.

7*
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In like manner

# = (112)

is the equation of the axis of y.

Corollary 4. The straight line may be referred to any

oblique coordinates by art. 71. But since the new axes may

be situated in any way whatever with regard to the former

ones, the generality of the result is not diminished by limiting

the original position of the line to that of the axis of y, cor-

responding to equation (112).

Thus, if the new origin is at the point A
x , we have

a = A'A — A"A iy

and (27) becomes

x
x
cos. a -\- y 1

cos. /? = — a.

Now — a is the value of A"A
1
counted from A lt or it is

the perpendicular let fall upon the line from the new origin,

and if we put

p — —a,
we have

x
x
cos. a -\- y x

cos. /} = p ; (1 13)

which is the equation of a straight line passing at the

distance p from the origin, « and & being the angles

which the perpendicular to the line makes with the axes

of x x
and y\-

Corollary 5. Equation (113) may be applied to the case in

which the new axes are rectangular, when

3

cos. P = — sin. « and cos. «- — sin. p,
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and (113) becomes

cos. a.x
1
— sin. «.y

1 =p, (114)

or — sin. |S. x
x

-\- cos. /J. y x
= p (115)

cos. j$ . y x
=3 Xj sin.

i

5 +p
y 2

== x
x
tan. I* +p • sec. p,

in which /S is the angle made by the line itself with the axis

of **

In fig. 40 let AB be the line, we have in the right triangle

A
X
PB, formed by letting fall the perpendicular A

X
P,

A
x
P=p

y
PA

X
B^=?

A
X
B = A

x
P sec. PA

x
B =s p sec. /?,

and, if

A == JL
x
B — p sec. (S

y x
—x

x
tang. /» + h, (116)

which is the equation of a straight line inclined to the

axis of x x by the angle ?, and cutting the axis of y x
at

a height h above the origin.

Corollary 6. The equation of the straight line may be ob-

tained for any polar coordidates by art. 47, or more simply by

art. 61, applied to the axis of y ; in this case we have, as in

corollary 4,

a — —p,

and (12) substituted in (112), gives

r cos. (g> + u
) = P> (11?)

which is the polar equation of a straight line passing

at the distance p from the origin, the perpendicular

upon it being inclined to the axis by the angle— «.
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Straight line in space.

11. To find the equation of a straight line in space.

Solution. If a point in the line is assumed as the origin, and

such rectangular axes of x, y, z, that the straight line makes

with them the angles A, u
y Vf the polar equations of the line

in the system of art. 87, are

<p = *, y = ft,
w — v . (118)

Corollary 1. It must not be forgotten that A, fli v are not

entirely independent of each other, but are subject to the re-

striction of art. 86,

cos. 2 x
-f- cos. 2 /t + cos. 2 v = 1. (H9)

Corollary 2. The equations of the axis of x are

9> = 0, v = J w
,
w = l'»5 (120)

those of the axis of y are

. y = Jtt, y = 0, w = J*r; (121)

those of the axis of z are

CP = J 7T, y = j 7T, W — 0. (122)

Corollary 3. Equations (39) become, by substituting in

them the values of y, V, w (118),

X x — r cos/\A
U tty — r cos. v

I z — r cos. X

;

whence

r=— =-^ =—

,

(123)
cos./* cos.* cos. a :

which are the equations of a straight line passing
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through the origin, referred to rectangular coordi-

nates.

Corollary 4. The equation of the straight line may be re-

ferred to any rectangular axes by equations of art. 93, by

which (123) becomes

',+« = y1+i s *, + c
(124)

COS. a COS. " COS. v

which are the equations of a straight line which passes

through the point, whose coordinates are — a, —-b, — c,

and is inclined to the axes by the angles ;., ,", »-.

12. To find the equation of the plane.

Solution. If the plane is that of xy. we have for all

its points, by art. 74,

z = 0, (125)

which is, then, the equation of the plane xy.

In the same way

y = o
. (126)

is the equation of the plane x z : also

x = (127)

is the equation of the plane y z.

Corollary 1. The plane may, by arts. 90, 91, be referred to

any axes whatever. Thus, for the plane of y z, equation (40)
gives, by (127),

x
x
cos. « + y 1

COS.0+ Z, cos. r=— «*== jp (128)

which is therefore the equation of the plane, which
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passes at the distance — a or p from the origin, and

the perpendicular to which is inclined by the angles

«, i*, r, to the axes x lt y lt z4 .

Corollary 2. If the plane passes through the origin, we

have

P = 0,

and (128) becomes

x
x

cos. « -|- y x
cos. p -|- z

x
cos. yz:0, (129)

13. To find the equation of the curve described by

a point in the circumference of a circular wheel, which

rolls in a plane upon a given straight line. This curve

is called the cycloid.

Solution. Let the given straight line AX (fig. 41.) be the

axis of x, and let the point A
t

at which the given point M of

the circumference touched AX, be the origin ; let

R = the radius CM of the wheel,

6 = the angle MCB, by which the point M
is removed from B.

Then, since the arc BM has rolled over the straight line AB
J

it must be equal to it in length, or, by art. 97,

R6 = BIB — AB.

Draw ME parallel to AX; the right triangle CME gives

CE — R cos. 6, ME = BP — R sin. 6,

whence

x = AP = AB—BP— R&— 22siD.fi, (130)

y= PM— BE—CB— CE= R— Rcos.6, (131)
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and the elimination of 6 from these two equations would give

the required equation. This elimination is thus effected ; (131)

gives, by transposition,

R cos. & = R — y,

whence

R sin. 6 — s/{R 2— R2 cos. 2 6) — ^[R2 _ (72— y)2]

which, substituted in (130), gives

X = R& — s/iflRy— y2)

_ x + V(2 Ry— y2)
&

R~ •

which, substituted in (131), gives

, = R-B«*( * + ''P]l'->')
) (132).

which is the equation of the cycloid, but is not so coti-

venient for use as the combination of the two equations

(130) and (131).

14. A line revolves in a plane about a fixed point of

that line, to find the equation of the curve described by

a moving point in that line, which proceeds from the

fixed point at such a rate, that its distance from the

fixed point is proportionate to the 7ith power of the

angle made by the revolving line with the fixed line

from which it starts. This curve is called a spiral.

Solution. Let the fixed point A (fig. 42.) be the origin, and

the fixed line AB the polar axis. Let M be the moving point
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Spirals.

which, after the line has revolved completely round once, has

arrived at M'. Let

R = AM',

we have, by condition,

r : R z=z <p
n

: (2 ?*)»,

or r ( 2 tt)» = 22 9>
B

, (133)

for the equation of the spiral.

Corollary 1. If n = 1 and 22 = 1,

equation (133) becomes

2 7rr=9, (134)

which is the equation of the spiral of Conon or of Ar-

chimedes.

Corollary 2: If n — — 1,

(133) becomes

(2 7r)-i r = jR<p~i,

or rcp=z2nR
} (135)

which is the equation of the hyperbolic spiral.

Corollary 3. If the logarithm of the distance of the

point had been equal to the angle, the curve would

have been the logarithmic spiral, and its equation

<f s= log. r. (136)

15. To find the equation of the right cylinder, whose

base is a circle.

Solution. Let the plane of the base be that ofxy. For

any point whatever (fig. 43.) the coordinates of its pro-
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jection P upon the plane of x y are x and y. But since the

point P is in the circumference of the base, x and y must

satisfy the equation of this circumference.

The equation of the right cylinder is then the same

as that of its base, if the plane of this base is assumed
as one of the coordinate planes.

Corollary. The preceding proposition is obviously

general, and may be applied to any right cylinder what-

ever, be its base a circle, an ellipse, an hyperbola, or

any other curve.

16. To find the equation of the right cone, whose
base is a circle.

Solution. Let the vertex A (fig. 44.) be assumed as the

origin, and let the axis of x be that of the cone, and let

X — the angle which the side of the cone makes

with the axis.

Every radius vector, as AM, is a part of a side, and there-

fore

cp =z x (137)

is a property of every radius vector, and is the polar

equation of a right cone, the origin being the vertex,

and i being the angle made by the side with the axis.

Corollary 1. The equation of the cone may, by art 88, be

referred to rectangular axes, and we have

x x
COS. w z=. — zzr —

;

zz: cos. *.9
r \/(x 2 +y2 +%2

)

'

8
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so that

x = s/{%* + y* _|_ %2
) C0S- a (138)

is the required equation.

Squaring and transposing, we have

(y
2 + z2

)
C0S -

2 2 = x2 (! —"
C0S -

2 x
) — *2 sin. 2 a

3/2 _|_ %2 = Z 2 tang. 2 a, (139)

which is the equation of a right cone whose vertex is

the origin, and axis the axis of x.

Corollary 2. The equation of the cone may be referred

to any rectangular axes which have the same origin, and

which make the angles a, /s, y with the axis of x, by arts. 90 -

92 ; for we have

r=:V(x2+y2 +z2) ==(V/( x
2 + ^2 +%2)

X= X
1
COS. a + V x

COS. /S -\- %
x

COS. y J

which, substituted in (138), give

x
1
cos.a+ yiCOs.|»+z 1

cos. y =r,v/( a;?+y?+z?)cosA (140)

Corollary 3. If the origin is changed to the point, whose

coordinates are a, b = 0, c = 0, the equation becomes

{x 2 -\- a) cos. a ~\-y 2 cos « Z
5 + z2 cos - y

= v'[(^ + «)
2 +yl + ^]co3.i. (i4i)
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CHAPTER V.

CLASSIFICATION AND CONSTRUCTION OF LOCI.

99. When the equations of loci are referred to rect-

angular coordinates, they are divided into degrees, or

orders, corresponding to the degree of their equation.

Thus the locus, whose equation is of the first degree,

is itself of the first degree or linear, and the same is

the case with other curves.

100. Theorem. The order of a curve is independent

of the particular system of rectangular coordinates to

which it may be referred; that is, it is of the same

order for all systems of rectangular coordinates.

Demonstration. The formulas (16, 17) or (40, 41, 42)

for transforming from one system of rectangular coordinates

to another are linear ; so that the greatest number of the di-

mensions of .t, y, z in any term must be the same with that of

the dimensions of x t , y lf zv The degree of the equation is.

therefore, the same, when expressed in terms of x xi y 1} z lf

that it is when expressed in terms of x, y, z.

101. Corollary. Since the equations for transforming

to oblique coordinates are also linear, the preceding

proposition may be extended to them.

102. Corollary. The degree of the circle is, by (58),
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Construction of loci.

the second ; likewise that of the sphere (62) ; of the

ellipse (69) ; of the hyperbola (85) ; of the parabola

(93) ; of the cylinder and of the cone. The degree of

the straight line (123) is the first, or it is linear, as is

also that of the plane (128). The equations of the

cycloid, and of the spirals, cannot be expressed without

the aid of arcs, so that these curves are transcenden-

tal.

103. Problem. To construct a locus, of which the

equation is given.

Solution. I, If the equation is that of a locus in a

plane, and expressed by polar coordinates, we can, by

giving successive values to q>, differing but little from

each other, calculate, by means of the given equation,

the corresponding values of r. As many points of the

required curve may thus be determined as may be

convenient, and the curve, which is drawn by the

hand through these points, cannot differ much from

the required curve.

II. If the locus were in a plane and expressed by

rectangular coordinates, points might be determined by

calculating for assumed values of x the corresponding

values of y.

III. If the equation were that of a locus in space,

and expressed by polar coordinates ; then for each as-

sumed direction of the radius its value might be calcu-

lated, and the locus obtained by joining the series of

points thus determined would obviously be a surface.
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IV. If the equation were that of a locus in space,

expressed by rectangular coordinates, values might be

assumed for x and y, and the corresponding value of z
would express the height at which the point of the

locus was above its projection upon the plane x y ; so

that this locus would also be that of a surface.

V. If there were two equations in space, then one

of the coordinates might be assumed at pleasure, and

the corresponding values of the other two obtained.

104. Corollary. A single equation between coordi-

nates in space denotes a surface. But if there are two

equations, the coordinates of each point of the locus

must satisfy each equation, and the point must be at

once upon both the surfaces represented by these equa-

tions ;
so that the locus is the intersection of these

surfaces, and is consequently a line.

105. In determining .the character of loci from their

equations, it is important that these equations should be

first of all referred to those coordinates, for which they

are the most simple in their forms.

8*
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Reduction of linear equation.

CHAPTER VI.

EQUATION OF THE FIRST DEGREE.

106. The general form of the equation of the first

degree in a plane is

Ax + By + M =0, (14£)

and that of the first degree in space is

Ax + By + Cz + M= 0. (143)

107. Problem. To reduce the general equation of the

first degree in a plane to its most simple form.

Solution. Let the general formulas (16) and (17) for trans-

formation from one system of rectangular coordinates to an-

other in a plane be substituted in the general equation (142).

The result is

(A cos. a-\-B sin. «) x t
-\-

(
B cos. «—A sin. «) y x

+Aa+Bb+M= (144)

in which a and b are the coordinates of the new origin, and

« the angle made by the axes x and x
x

.

Now the position of the new origin may be assumed at such

a point that

Aa + Bb-\-M-z 0, (145)

and the angle « may be so assumed that

A cos. a -J- B sin. « = 0,

or tang. « = =, (*46)
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whence

1 B
cos. « —

V(l + tang.* a)
_
V^ 2 + B 2

)

A
SID. a = COS. cc . tang. « zrr —

V(^ 2 + B 2 )'

and (144) is reduced to

A 2 +B 2 _
s/(A 2 + B*) Vl T

or V(^ 2 +^ 2
)yi = o,

whence y x
= 0, (147)

which is as simple a form as the given equation can attain.

108. Corollary. Since

is, by (111); the equation of the axis of x 1} £Ae locus

of the given equation is a straight line, which passes

through the point of which the coordinates are a and b,

and is inclined to the axis of x by the angle whose

tangent is — A -j- B.

109. Corollary. If the given equation (142) is divided by

\/(A 2 -\- B 2
), and cos. « and sin. « are substituted for their

values, it becomes, by transposition,

-sm. g .x + cos.«.y = -V(
J%3)

,

which, compared with (115), leads to the result that

M
\/(A 2 +B 2

)

is the length of the perpendicular let fall upon the line

from the origin.



92 ANALYTICAL GEOMETRY. [b. I. CH. VI.
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Of the two values of

V(-42 + £ 2
) == ±V(^2 + £2

),

that value should then be taken which renders

_ M ~- V(^2 + B2)

positive
3
that is, the value which is of the same sign

with — M.

110. Problem. To find the angle of two lines in a

plane, whose equations are given.

Solution. Let their equations be

and let a, a
x
be the angles which they respectively make with

the axis of x ; we have for the angle I, which they make with

each other,

I=a
x
—a. (148)

But, by (146), we have

and

A A
tang, a — — — , tang. «

x
= — -j±

tang. I= tang. (a
1
— «)

tang. « j — tang, a

~
1 -|- tang. «tang. «

2

tang. 7= i|^_^. {149 )
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111. Corollary. If the two lines are parallel, we have

1=0
tang. 7=0

A
1
B — B

1
A = 0, (150)

or %=i (151)

for the equation expressing that the two lines are paral-

lel.

112. Corollary. If the two lines are perpendicular, we
have

/= Jtt,

tang. I= oo = $

;

or the denominator of (149) must be zero; that is,

AA
1 + BB

1
~0 (152)

is the equation expressing that the two lines are perpen-

dicular.

113. Corollary. In case the two lines are parallel, their

distance apart must, by art. 109, be

M M
x

s/(A2+B*) ' V(A1+B*)'

114. Problem. To find the coordinates of the point

of the intersection of two straight lines in a plane.

Solution. Let the coordinates of the point of intersection

be x and y Qf and let the equations of the line be the same
as in the preceding article. Since the point of intersection is
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upon each line, its coordinates must satisfy each of their equa-

tions, or we must have

A x + B y + M == 0,

A^ + B.y.+M^O;
from which the values of x and y are found to be

BM.-B.M
*°- AB.-A.B' (153)

A,M—AM
1

..y^ AB.-A.B ' (154)

115. Corollary. If the equations of the line had been given

in the form corresponding to (115)

— sin. « . x -j- cos. a y z=i p

— sin. a
1
.z + cos.«

1 y — p x

we should have found

p COS. «
x p i

COS. a _pCOS.«
1

^COS^

sin.

«

x
cos. «—.cos. a

x
sin. a sin. («

x
— «)

^sin. a,— p .sm.a
y°— sin. («! — «) '

116. Corollary. The values of z and y (153) and (154)

would be infinite, if their denominators were zero, that is, if

we had
AB

X
— A^zzzzO,

or by (150) if they were parallel, in which case they would

not meet, and there would be no point of intersection.

117. Problem. To find the equation of a straight

line, which makes a given angle with a given straight

line.
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Solution. Let the given angle be 1, and the equation of the

given straight line

— sin. a . x -\- cos. a . y —: p }

and let that of the required straight line be

— sin. cfj . x -\- cos. a
1 ,y = p 1 ,

in which <*
1
and p x

are unknown. We have, by the condi-

tions of the problem,

«! — « — J, orsj = I-\- «;

and this value of ffl , being substituted in the equation of the

required line, gives

— sin. (I-\- a). x -f- cos. (J-f- «) y = p 1 (157)

for the required equation, in which p x
is indeterminate, be-

cause there is an infinite number of lines which satisfy the

condition of the problem.

118. Corollary. If the required line is to be parallel to the

given line, we have

1=0,
and (157) becomes

— sin. a.x -j- cos. a.y = p x
. (158)

119. Corollary. If the required line is to be perpendicular

to the given line, we have

/= i™, sin.
(
I -f- «) = cos. «, cos. (7+ «) = — sin. «,

and (157) becomes

cos. a x -\- sin, ay — —p x
. (159)

120. Problem. To find the equation of a straight

line, which passes through a given point.
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Solution. Let x', y' by the coordinates of the given point,

and

— sin. a . x -\- cos. « . y — p,

the required equation in which a and p are unknown. Since

the given point is in the required line, its coordinates must

satisfy this equation, and we have

— sin. a .
«' + cos * « • V' — P> (!60)

which is a condition that must be satisfied by « and p ; al-

though it is not sufficient to determine their values, because

many different lines can be drawn through the same point.

If the value of p is substituted in the required equation, it

becomes, by transposition,

— sin. a . (x— x') -\- cos. «. (y— y') — 0, (161)

or, dividing by cos. a,

— tang, a (x—x') + (y — y>) = 0, (162)

which is the required equation, « being indeterminate.

121. Corollary. If this straight line is also to pass through

another point, the coordinates of which are x" and y"
}
we also

have this condition corresponding to (160)

sin. a , x" -f- COS. « . y" — p f

from which and (160) the values of p and « are to be found.

The difference between the last equation and (160), divided

by cos. a and by x" — x'', is

tang- • =f^|

;

(163)

which substituted in (162) gives, by transposition,

y-y>=J!^^(z-Z<) (164)
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Parallel and perpendicular to given line.

for the equation ofa straight line, which passes through

the two points whose coordinates are x'
,
y' and x"

,
y".

122. Corollary. If the straight line of art. 120 has also to

make a given angle with the straight line whose equation is

— sin. «i x -\- cos. a
1 y — p

we have, by art. 117,

which substituted in (162) gives, by transposition,

y-y' = tang. (/+ «J (x — x>) (165)

for the required equation.

123. Corollary. If the two lines of the preceding article

are to be parallel, we have

1=0,

and (165) becomes

y —y> = tang. a
x

(x — x'). (166)

124. Corollary. If they are to be perpendicular, we have

T=i^; tang. (J^ + a
x )
— — cotan. «

1}

and (165) becomes

y —y 1 — — cotan. «
1 (

x — z'), (167)

which is, therefore, ?Ae equation of the perpendicular

let fall from the point, whose coordinates are x' y' upon
the straight line, whose equation is

— sin. «j x
-J- cos. «j y — 2^.

9
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Length of perpendicular to line.

125. Corollary. For the point of intersection of the per-

pendicular (167) with the line upon which it falls, that is, for

the foot of the perpendicular, we find by the process of art.

114,

xQ
— y' sin. ai cos. a

1 -f- z'cos. 2 a x —

p

x
sin. Ul (168)

y = y'sin. 2 «
x
-[-a;' sin. a

1
cos.a

1
-\-p

±
cos. a

yl ; (169)

126. Corollary. The length p of this perpendicular is

the distance between the points x'
} y and x ,y , so that by

equation (23)

p% = (*' — *o)
2 + (y' — yo)

2
>

but by (168) and (169)

x'— x — x'(l— cos. 2 «j)— y's'm.a
1
cos. «

x
-{-p

1
s'm. a

1

= x' sin. 2 a
x
— y' sin. a

1 cos. a
x
-\-p\ sin. « x

= {x 1

sin. «j — y' cos. «
2

-}- p t ) sin. ai

y'— y ==— (x' sin. «
x
—y cos. % +^ x ) cos. «

lf

so that

p\ = (x'sin. «! — y' cos. a
x -{-p^

2 (sin. 2 «
x
-|- cos. 2 «

x )

= (x'sin. a x
— /cos. «j +Pj) 2

|) r= x' sin. a
x
— y' cos. «

2 +p x
. (1^0)

127. Problem. To reduce the general equation of

the first degree in space to its most simple form.

Solution. Let the general formulas (40, 41, 42) for trans-

formation from one equation of rectangular coordinates to

another in space be substituted in the general equation (143)

Ax+By + Cz + M= 0,
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the result is

(A COS. «
-f- B COS. a' -)- C COS. a") x

x

+ (A cos. ? + B cos. (?' + C cos. |S") y

-f-
(J. cos. 7 + -B cos. / -|- C cos. 7") z

x

+ ifl + 56+Cc + i/zzO, (171)

in which «, #, 7, «', ^ y
1

, a", p", y" are subject to the six con-

ditions (44-49).

Let now the position of the new origin be assumed at such

a point, that its coordinates a, b, c satisfy the equation

Aa-}-Bb + Cc + 31— 0, (172)

and let the angles ? and y be subject to the two conditions

A cos. ? + B cos. ?' +C. cos. <*" =: (173)

A cos. 7 + B cos. / + C. cos. y" = 0. (174)

By this means equation (171), divided by

A COS. a -\- B COS. a'
-J- C COS. a",

is reduced to

x
x
= 0. (175)

128. Corollary. Let

^ cos. a-\-B cos. «' + C cos. «" — Z, (176)

and if (176) is multiplied by cos. «, (173) by cos. p, (174) by

cos. y, the sum of the products, reduced by means of equa-

tions (47,50, 51), is

A = L cos. «. (177)
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In the same way we find

B = L cos. «' (178)

(7=icos. «". (179)

The sura of the squares of (177, 178, 179) is, by art. 86,

whence

A 2 4- B 2 + C2 — L 2 (180)

L = s/(A 2 + B* + C2
), (181)

A A
(182)cos. « _ £ _ V(^2+ ^ 2 + C2)

/ - B - B
(183)

' — L ~ s/(A 2 + B 2 + C2
)

u _ C _. C
(184)c0- c - JL - V(^ 2 + b* + c*y

Corollary. Since

x
l
=

is the equation of the plane y t
2r

1
£Ae Zoczjs of the general

equation (143) of the first degree in space is a pla?ie,

the perpendicular to which is inclined to the axes by

angles^ which are determined by equations (182-184).

130. Corollary, Since the intersection of two planes

is a straight line, the locus of two equations of the first

degree is a straight line,

131. Corollary. If the equation (143) is divided by L
y

and the values (182-184) substituted in the result, it be-

comes
M

COS. « X -j- COS. a' y -j- COS. «" Z = yr,
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which, compared with (1 28), leads to the conclusion that

M

is the length of the perpendicular let fall upon the plane

from the origin,

132. Problem. To find the angle of two planes.

Solution. Let their equations be

A-x + By + Cz-\-M =
A

l
x + B 1y + C

1
z + M1

=0,

and let a p Y , a
x p x y x

be the angles which the perpendiculars

to them make with the axes of x, y,z\ and let I be the angle

of the planes. The angle / is also that made by the perpen-

diculars to the planes, so that, by (43),

COS. Jz= COS. a COS. «
x + COS. |5 COS. ^ -\- COS. Y COS. Y l} (185)

and by equations (181 - 184)

_ AA
1
+BB

1 + CC,
COS. J= ?— py1—

!

*-

_ AA. + BB. + CC,
~ V(^+ jB2+ Ca)V(il?+£!+C?)' k

'

133. Corollary. If the planes are parallel, their per-

pendiculars are parallel, and make equal angles with

the axes, so that

A, A. B B
t
C C.

-irj^-z-T^L^r: (187)
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Perpendicular planes.

A B C L
A~- -Bl~ -C[- i/ (188)

ind their distance apart in this case is

M
1

M
(189)

134. Corollary. If the planes are perpendicular, we
have

/ = 90°, cos. I =z 0,

and (185) and (186) give

COS. a COS. a j -\- COS. |* COS. p % -f- COS. y COS. y^O (190)

AA
X + 7?JB

1 + CC
X
= 0. (191)

135. Corollary. Since

sin. /:= -v/(l — C0S -
2 I)

we have, by (18G),

(^L 2+^ 2 + C2
)
(A 2+B 2 -\-C2

)

_ (
A2+B 2+^)(^f+^?+^)-(^^ 1+^^ 1

+^1 )
2

77 (^.2 _)_ij2 _j_ c2
)
(A 2 + B 2 + C2

)

iA*B 2— <ZAA
l
BB

1
+A 2 BZ+ A*C2—ZAA

1
CC

1
)

( 4-i4 2 C,2 + ^2C2_2J5^ 1 CC 1 4-B 2C2 J+ A 2 C2 -\-

B

2C2 —2 BB
1
CC

1
-j- B 2C2

(192)

(A*+ B2+C2)(A 2 + B 2 + C2
)

(AB
1
—A

lBf+ (AC
l
—A

1
Cf-\-(BC

1
—B

1Cf
(A 2 +B 2 + C2 )(A 2 +B 2 + Ci)
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We also have, by (181-184),

= (COS. a COS. |?
x

COS. /? COS. a
x )

2

-j- (cos. a COS. Y x
COS. y COS. «j)

2

-|- (cos. /5 cos, y
1
— COS. y COS. (Sj 2

. (193)

136. Problem. To find the angle which a line

makes with a plane.

Solution. If a, ,«, 7 , are the angles which the line makes
with the axes, and *v fo'n, those which the perpendicular

to the plane makes, and / the angle made by the given line

with the plane, the angle which the line makes with the per-

pendicular to the plane will be the complement of J, and we
shall have

sin. /=: cos. «cos.«
1
-)-cos. /$cos. p x -f-cos. ycos. Yl (194)

COS.2 I =z (COS. a COS. ft COS. /S COS. «j)
2

-f- (COS. « COS. Yl COS. y COS. «
x )

2

-|- (cos. ?cos. Yi — cos. y cos./*J2
. (195)

137. Corollary. If the line is parallel to the plane, we
have

sin. J= = cos.« cos. a
x -j- cos.;? cos.^ -(- cos.y cos.y

t
. ( 1 96)

138. Corollary. If the line is perpendicular to the plane,

we have

« = «! , /? = ft , y = yi

.
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Perpendicular to plane.

139. Problem. To find the equation of a plane,

which passes through a given point.

Solution. Let a , /?, y be the angles which the perpendicular

to the plane makes with the axes, and let x', y' z' be the co-

ordinates of the point, and p the perpendicular let fall upon

the plane from the origin.

The equation of the plane is

COS. a.Z-\- COS. /S . y -f- COS. y . Z = p,

and since the point is in this plane, its coordinates satisfy the

equations of the plane, and we have

cos. « . x' -|- cos. p . y' -j- cos. y • z' ==P >

and if the value of p thus obtained is substituted in the equa-

tion of the plane, it gives

cos.«(x— x') + cos.?(y— y) + cos. y {z— z')= 0, (197)

in which «, p, y are arbitrary.

140. Corollary. The distance of this plane from another plane

parallel to it, and which passes at the distance pi from the

origin, is

p— pi = cos.a.x'-f- cos. /»

.

y' -\- cos. y . z'—p v (198)

which is therefore the length of the perpendicular let

fall from the point x'
,
y', z', upon the pla?ie, whose

equation is

cos a . % -\- cos. £ . y -j- cos. y . z =1 p x .

141. Examples involving Linear Loci.

1. To find the locus of all the points so situated in a plane,

that m times the distance of either of them from a given line,
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added to n times its distance from another given line, is equal

to a given length.

Solution. Let the first given line be the axis of x, and let

the intersection of the two lines be the origin, and « the angle

which these lines make with each other. Then, if x, y are

the coordinates of one of the points of the locus, we have

y = the distance from the first line,

and if p is the distance from the second line, we have, by

(170),

p z= x sin. a — y cos. «.

If, then, I is the given length,

l—my-{-np Q

I = m y -\- nx sin. « — n y cos. «

— n . sin. a .x -\- (n cos. « — m) y z= — I

so that the required locus is, by art. 108, a straight line, in-

clined to the first given line by the angle (*, such that

tang. p =z
n cos. a— m

and which, by art. 109, passes at a distance from the intersec-

tion of the two lines equal to

I I

\/[?i2 sin.'2 «-J-(rtcos.«

—

m)'2
]

\/(n 2-\-m2— 2y/JKcos.«)'

Scholium. The whole length of the line thus obtained

satisfies the algebraical conditions of the problem, but not the

intended conditions. For at those points, where the value of

y or that of p Q
is negative, / is no longer the absolute sum of

my, and np but their difference.
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Corollary. When m — n

we have

cos.«—

1

— 2sin.2 Aa
cotan. s ——; = 7T-.—z. —zr~ = — tang. \ «

sin. a 2 sin. £ a COS. ^ a

(5=90°+ J a,

and the distance from the point of intersection becomes

I I

w\/(2— 2 cos. a) " 2 m sin. J a"

2. To find the locus of all the points so situated in a plane,

that the difference of the squares of the distances of either of

them from two given points in that plane is equal to a given

surface.

Ans. If 2 a = the distance of the two given points apart,

and if the given surface is a parallelogram, whose base is a and

altitude b, the required locus is a straight line, drawn perpen-

dicular to the line joining the given points, and at a distance

equal to £ b from the middle of this line.

3. To find the locus of all the points, from either of which

if perpendiculars are let fall upon given planes, and if the

first of these perpendiculars is multiplied by m, the second by

m lt the third by m2 , &c, the sum of the products is a given

length /.

Ans. If

cos. « a; -j- cos. p y -f cos. y z — p
cos. «i x + c°s - Ciy + cos. /i z —: pi

&c, are the given planes, the required locus is a plane, whose

equation is

(»»cos.a-(-»i
1
cos.a

1
+&c.)x+(mcos.iS-fOT

1
cos./»

1-f-&c.)y

-[-(mcos.y-J-WjCOS.yj -j- &c.)z— 7-f mp-j-m iPi + &c.
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or if the letter S. is used to denote the sum of all quantities

of the same kind, so that

S . m = m -f m 1 -f &c.

the equation of this plane ma}r be written

8. m cos. o. x
-f S .m cos. P .y -}- S . m cos. 7 .z— l-\-S. mp.

Scholium. This result is subject to limitations, precisely

similar to those of example 1.

4. To find the locus of all the points, whose distances from

several given points is such that if the square of the distance

of either of them from the first given point is multiplied by
m

1 , that of its distance from the second given point by m 0}

&,c. the sum of the products is a given surface V. The
quantities m 19 ?n 2 ,

&c. are some of them to be negative, and
subject to the limitation that their sum is zero.

Ans. If x
x , y x ,

z
t

is the first given point, x2t y2 , z2 the

second one, &-c, and if S is used as in the preceding ex-

ample, we have

S. *! = 0,

and the required locus is the plane whose equation is

xS.m
1
T

1
.+yS.m

1
ij

l
.+zS.m

x
z

1
=S.m

1
(x\+y2Jrz2).--V
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Reduction of the equation of the second degree in a plane.

CHAPTER VII.

EQUATION OF THE SECOND DEGREE.

142. The general form of the equation of the second

degree in a plane is

Ax^ + Bxy + Cy2 + Dx + Ey + M.=.0, (199)

and that of the equation in space is

Ax* + Bxy + Cy* + Dxz + Eyz -j- F z*

-r Hx + Iy+Kz + M — 0. (200)

143. Problem. To reduce the general equation of

the second degree in a plane to its simplest form.

Solution. I. By substituting in (199) equations (18) and

(19) for transformation from one system of rectangular co-

ordinates to another, the origin being the same ; representing

the coefficients of xf, y\, x
l}

and y Y by A 19 B 1
,D

1 , and Ej ;

and taking a of such a value that the coefficient of x\ y\ may
be zero; (199) becomes

Aix\ + Biy\ +2> J x1 + £ 1 y 1 -f 31=0. (201)

in which we have

A1=zA cos.2 « -f B sin. « cos. « + Csin.2 « (202)

B != A sin.2 <*— B sin. « cos. « -f C cos.2 a (203)

DiznD cos. « -}- E sin a (204)

Ei =—D sin. « + E cos. a, (205)
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and a satisfies the equation

2 (C—A) sin. « cos. « + B (cos.2 «— sin.2 «) =. 0. (206)

II. If, now, we substitute the formulas (20) for transposing

the origin in (201) ; using x 2 and y 2 for the new coordinates

;

take the coordinates a and 6 of the new origin of such values,

that the coefficients of x 2 and y 2 may be zero ; and denote

the sum of the terms which do not contain x2 or y 2 by M
x ;

(201) becomes

A
1
x*+B

1
y2+3f

1
=

} (207)

in which

M
1
= A

1
a* + B

1
b* + D

1
a + E

x
b + M, (208)

and a and b satisfy the equations

2A
1
a + D

1
= (209)

2B
t
b + E

1
= Q. (210)

The form (207) to which the given equation is thus re-

duced is its simplest form.

144. Corollary. If we take L, L' such that

L — 2 A cos. « + B sin. a (211)

L—2C sin. a + B cos. «, (212)

these values may be substituted in (206), and the double of

(202) would give

2 A
t
= L cos. a -j- L' sin. « (213)

== L' cos. « — L sin. «. (214)

The product of (213) by cos. «, diminished by that of

(214) by sin. «, reduced by means of the equation

sin.2« + cos2«— 1 (215)

10
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is, by (211),

2 A j cos. ct—L = 2A cos. «+ B sin. «, (216)

or 2(^ 1
— ^l)cos.«—.,Bsin.« — 0. (217)

The product of (213) by sin. « added to that of (214) by

cos. « is, by (215) and (212),

2A
±
sin. «z=I/ = 2 Csin. a+ B cos.

«

(218)

2 (.4
t
— C) sin. « — B cos. « = 0. (219)

The product of (217) by 2(A
1
— C) added to that of

(219) by B is, when divided by cos. «,

4:{A
1
— A) {A

1
— C) — B2 —

t (220)

from which equation the value of A x may be determin-

ed, that is, if we put X instead of A X) A x
is a root of

the quadratic equation

4(JT— ii) (X— C) — £ 2 = 0; (221)

the roots of which are

X=%(A+ C)±iV(B2+ A2—2AC+C2)

= J(^+ C)±i\/[S 2 + (^— C) 2
]. (222)

145. Corollary. If we take ij and Z/j such that

Z
x
= 2 ^4 sin. « — B cos. a (223)

&i = 2 C cos. « — B sin. a, (224)

these values may be substituted in (206) and the double of

(203), and give

2 B
x
~ L

x
sin. a + L>

x
cos. « (225)

= L\ sin. « — L
x

cos. «. (226)
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The product of (225) by sin. a diminished by that of

(226) by cos. « is, by (215) and (223),

2B
1
sin.« = L

L
— 2 A sin. « — B cos. a (227)

or 2 (B
1
— .4) sin. « + ^ cos. « = 0. (228)

The product of (225) by cos. a added to that of (226) by

sin. a is, by (215) and (224),

2jB
x
cos. « = L\ — 2 Ccos. « — ^ sin. « (229)

or 2(B
1
— C) cos. « + Bsin. « — 0. (230)

The product of (228) by 2 (jB
x
— C) diminished by that

of (230) by B, and divided by sin. «, is

4 (B
1
— A) (B

x
— C) — B2 = 0, (231)

from which equation the value of B
1
may be determined;

that is, if we put X instead of B 1} B x
is a root of the equa-

tion (221).

A
x
and B x are then the two roots (222) of the equa-

tion (221).

146. Corollary. The value of « may be obtained from the

equation (217), which gives

sin. « 2(ii.

—

A) y«rtrti
tang, a — = v

* \ (232)6
cos.« B v }

or it may be obtained directly from (206).

If we substitute in (206)

sin. (2 a) = 2 sin. a cos. «, cos. 2 « — cos.2 «—sin.2 «, (233)

it becomes

(C— 4) sin. 2« + £cos.2<* = 0; (234)
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whence

sin 2 K JB
tang. 2 « = -^- = „ ^ (235)6

cos. 2 a A—C K
'

147. Scholium. The values of ^ and #
x (222) are al-

ways real as well as that of a (235), and those of D
x
and E

x

(204) and (205) ; but the equations (209) (210) are impossi-

ble if A
x
and B

x
are both zero, while D

x
and E

x
are not

zero, or if either A
x
or B

x
is zero, while the corresponding

value D
x
or E

x
is not zero.

148. Scholium. The values of ^4
X
and .Bj cannot both be

zero, for, in this case, the quadratic terms would disappear

from (201), and (201) could not, then, by art. 100, be a re-

duced form of a quadratic equation.

149. Scholium. If either A
x
or B

x
were zero, the corre-

sponding root of (221) would be zero; that is, this equation

would be satisfied by the value

X=0,

which reduces it to

4 AC— £2 = 0; (236)

and if we take A
x

for the root which vanishes, we have,

by (232),

tang.« = -^. (237)

But

COS. a - J_ — } —

;

(238)
sec.« /v/(l + tan -

a
)
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whence

sin. » = cos. a tang. «=—^^ +—^ (240)

so that Z>
x
will vanish, only when

DB =2AE
; (242)

and in this case (201) becomes

B iy\+E iyi +M=Q; (243)

which gives

yi = *,W(S-4iM/)
; (344)

so that the required locus is the combination of two lines

drawn parallel to the axis of x x
at the distances from

it equal to these two values of y lf unless these values

are imaginary or equal, in the former of which cases

there is no locus, and in the latter the given equation

is the square of the equation of the line.

150. Scholium. If the values of A, B, C satisfy (236), so

that one of the roots of (221) is zero, and if this one is taken

for A xi we have for the other root, by (222),

B
1 =i(A + C)+W(^^C+A^-2AC+C^)
= i(A + C)+i(A + C) = A + C, (245)

10*
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and (201) becomes

(A + C)y\ + D
1
x

1
+E l2/l +M = 0. (246)

The origin may now be transposed as in art. 143, the co-

ordinates a and b being taken of such values that the coefficient

of y 2 may be zero, and the sum of the terms which do not

contain %2 or y2 may be zero, and (246) is thus reduced to

(A + C)y% + D
1
x2 =,0. (247)

The values of a and b satisfy the equations

2(A + C) b + E
1
— (248)

(A + C)b 2 + D 1
a+E

1
b +M = 0, (249)

whence

- 2(4+ C)

— (A-\-C)b 2 —E
1
b — M

and if we put

*P~ A + C y (250)

(247) becomes

y% — *P X 2 = °>

or yf = 4pz
2 . (251)

151. Corollary. If the equation (221) is written in the form

S2 — [A + C) 8+ i (4 AC— B 2
) = 0. (252)

The term £(4 AC— B 2
) is the product of the roots A

,

and JBj of this equation.

A
x
and B x are therefore of the same sign, when
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A AC is greater than B 2
; and they are of opposite

signs if A A C is less than B 2
.

152. Corollary. When B 2 is less than 4 A C, and, conse-

quently, A
x
and B

x
are of the same sign, we will put

A
x

1 _Bj_ _1_

that sign being prefixed to M lt which renders the first mem-
bers of these equations positive. If then (207) is divided by

4- M
x , the quotient is

^±1 = 0. (254)

153. Scholium. If M
x
were zero, the equations (253) would

be absurd, but in this case equation (207) would be

A
i
x22+B

1
t/
2 = (255)

in which both the terms of the first member have the sign, so

that the equation can only be satisfied by the conditions

x2 == 0, y2
— 0, (256)

which represents the origin of the axes of x2 and y2 .

Hence, and by art. 143, the locus of the given equation

is , in this case, the point whose coordinates are the

values of a and b (209) and (210).

154. Scholium. If M
x
were of the same sign with A

x
and

B lt the upper sign would be used in equations (253) and

(254), the first member of (254) would then be the sum of

three positive quantities, and could not be equal to zero.

The given equation has, then, no locus, in this case.
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Hyperbola. Two lines.

155. Scholium. When M
x

is of the sign opposite to that

of A
x
and B

x
, the lower sign must be used in equations

(253) and (254), and (254) becomes, by transposition and

omitting the numbers below the letters, which are no longer

necessary,

J£r + J§s= 1 > (257)

which is of the same form with the equation (69) of the

ellipse.

156. Corollary. When B 2 is greater than 4 AC, and, con-

sequently, A
x
and B

x
are of opposite signs, we will put

^7 = ^1' wk^^f (258)

those signs being prefixed to M
x , which render the first mem-

bers of these equations positive. If, then, (207) is divided by

-4- M
x , the quotient is

157. Scholium. If M
x
were zero, the equations (258) could

not be used, but in this case equation (207) would be

A
x
z 2 + B

x y
2 = 0,

which, multiplied by A
x ,

gives

A 2 x 2 = -A
x
B x y

2
;

or, extracting the root,

A
x
z2 = ±*/(-A

x
B

x )y2 ;^ (260)

the second member of which is real, because A
x
and B

x
are

of-opposite signs.
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The locus of the given equation is then the combi-

nation of the two straight lines represented by the two

equations included in (260), each of which passes

through the origin of x2 and y2 .

153. Scholium. If iT7 L is not zero, equation (259) may, by

omitting the numbers below the letters and transposing the

terms, be written in one of the forms

^2-_ll = i (261)
A* B 2

\ '

q/2 j-2

and the second of these equations becomes the same as the

first by changing x, y, A, B into y, x, B, A respectively.

Equation (261) is of the same form with equation

(85) of the hyperbola,

159. Theorem. The equation (257) is necessarily

that of an ellipse.

Proof To prove this it is only necessary to show that each

point of its locus is so situated, that the sum of its distances

from two fixed points is always of the same length. By com-
paring the equation (226) with the solution of example 2, art.

98, it is apparent that, since all the points of the ellipse satisfy

the equation (69), they are in the required locus ; so that if

all the points of- the required locus are in the ellipse, the two
fixed points must be in the axis of x at a distance c from the

origin such that

c = ± V(A 2 — B2), (263)

and that the given length must be 2 A.
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Now the distance r of the point x,y from one of these fixed

points is, by art. 23,

r = V[(*-<) 2 +3/ 2
]; (264)

B 2 x 2

but since y
2 ~B 2 ~- and c 2 — A 2 — B 2

,

we have

r == \/(x 2 — 2cx + c 2 +y 2
)(B 2 x 2 \

(A* — B 2 \

Az
Z2-2CZ + A2)

-A- A
)
=±-A— W*

Now of the two signs -|- and — , that must be used which

gives the distance r positive. But we have

c < A and x < A

for c=.*/(A 2 —B 2
)

and z^V^A 2 --^}.
Hence

cx<A 2 or cs — A 2 <0; (266)

so that the lower sign must be used in (265), which gives

r = A- C

-£; (267)
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so that for the distance from one of the fixed points we have

r^A-l^^l, (268)

and for the distance from the other

whence r, + r2
— 2 A

; (270)

that is, all the points of the required locus belong to the

ellipse.

160. Theorem. The equation (261) is necessarily

that of an hyperbola.

Proof. The proof is the same as in the preceding theorem,

except that the word difference is to be used for sum, the siom

of B 2 is to be changed, and in the value of r (265) the lower

sign is to be used, where c and x are both positive or both

negative. For, since the values of c and x are

c = ±V^2+ #2
) and^± (a*+ ii|!\

we have, when c and x are of the same sicrn

c x > A 2 or ex — A 2 > ;

whence r% = f| — A. (271)

But if c and x have opposite signs the product c x is nega-
tive, so that

r
2 =

C

~J + A (272)
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Parabola,

whence r2
— r

1
= ZA; (273)

that is, all the- points of the required locus belong to the

hyperbola.

161. Theorem, The equation (251) is necessarily

that of a parabola.

Proof. We have only to show that the distance of each

point of the locus from that point of the axis of x 2 , whose

distance from the origin is p, is equal to its distance from

that line which is drawn parallel to the axis of y 2 , and at

the distance —p from it. Now since the distance of the

point x,y from the axis of y is x, its distance from the line

parallel to it must be

x+p;

and its distance r from the fixed point must be

r= V[(*— p)
2 +y 2

]

— \/(x2 — 2px+p 2 +4pz)=*/(z2+ 2
j
pz-f-;>2 )

= x+p, (274)

which is the same as the distance from the line ; all the points

of the locus of equation (251) are then upon the same pa-

rabola.

162. Theorem. In different ellipses which have the

same transverse axis, the ordinates which correspond to

the same abscissa are proportional to the conjugate

axes.

Proof. Let the common transverse axis be 2 A, the differ-

ent conjugate axes 2 5, 25j, &c, and let the ordinates,
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which correspond to the same abscissa x, bey, y x
&c, we

have

A 2 y2 — B 2 (Al — x 2
)

A 2 y\ — B 2 {A 2 —x2
),

whence, by division,

A 2
y
2

: A 2 y 2 — B 2 (A 2 —x 2
) : B 2 (A 2 —x2

)

or y 2
: y

2 = B 2
: B 2

,

or extracting the square root

y:y x
= B:B

1
= 2B:^B

1
.

163. Corollary. Since the ellipse, whose conjugate

axis is equal to its transverse axis, is a circle, the ordinate

of an ellipse is to the corresponding ordinate of the

circle, described upon the transverse axis as a diameter,

as the conjugate axis is to the transverse axis.

164. Corollary. In different ellipses which have the

same conjugate axis, the abscissas which correspond to

the same ordinate are proportional to the transverse

axes.

165. Corollary. The abscissa of an ellipse is to the

corresponding abscissa of the circle, described upon the

conjugate axis as a diameter, as the transverse axis is

to the conjugate axis.

166. Corollary. It may be proved in the same way
that in different hyperbolas, which have the same trans-

verse axis, the ordinates which correspond to the same

abscissa are proportional to the conjugate axes ; and

11
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that in different hyperbolas, which have the same con-

jugate axis, the abscissas, which correspond to the same

ordinate, are proportional to the transverse axes.

167. Corollary. Understanding, by an equilateral

hyperbola, one in which the axes are equal, the ordi-

nate of any hyperbola is to the corresponding ordinate

of the equilateral hyperbola, described upon its trans-

verse axis, as the conjugate axis is to the transverse

axis, and the abscissa of the hyperbola is to the cor-

responding abscissa of the equilateral hyperbola, de-

scribed upon its conjugate axis, as the transverse axis

is to the conjugate axis.

•

168. The term abscissa is often applied, in regard to

the ellipse and hyperbola, to denote the distance of the

foot of the ordinate from either of the extremities of

the transverse axis.

Thus the abscissas of the point M (fig. 38.) of the ellipse

are

CP = AC — AP — A — x

and CP = AC + AP = A + x.

The abscissas of the point if (fig. 36.) of the hyperbola are

CP = AP — AC z=% — A

and CP ~ AP + AC— x + A.

169. Theorem. The squares of the ordinates in an

ellipse or hyperbola are proportional to the products of

the corresponding abscissas, the term abscissa being

used in the sense of the preceding article.
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Proof. I. The product of the abscissas for the point

x, y of the ellipse is, by the preceding article,

(A + x) {A — x) — A 2 — x2
;

and this product for the point x'
f
y' is

A 2 — x' 2
.

But, by equation (68), we have

A 2 y 2 =z A 2 B2 —B 2_x2

A^y'^— A 2 B 2 —B^x'S;

whence

A 2 y 2
: A 2 y'2 = A 2B2 — B2 x2 : A 2B 2 — B2 x' 2

,

or, reducing to lower terms,

y
2

: y'2 — A 2 — x 2 : A 2 —x' 2
y

which is the proposition to be proved.

II. In the same way, for the hyperbola, the products of the

abscissas for the points x, y, and x', y' are

X 2 _ A 2 and x>2 — A 2
.

But, by equation (84),

A 2
y
2 — B2 x2 — A 2B 2

A2y<2 — b 2 x' 2 — A 2B 2
,

whence y
2

: y' 2 = x2 — A 2
: x'2 — A 2

.

170. Theorem. The squares of the ordinates in a

parabola are proportional to the corresponding abscis-

sas.
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Proof. For the point x, y we have by (93)

y* = 4Px,

and for x',y' y'2 = 4P x',

whence y2 :y2 = 4Px:4 Px' = x : x',

which is the proposition to be proved.

171. Problem. To find the magnitude of an angle,

which is inscribed in a semiellipse.

Solution. Let CMC (fig. 45.) be the semiellipse, whose

semiaxes are A and B, let I be the required angle CMC\
a the angle MCX, £ the angle MCX

i
and x'

t y' the co-

ordinates of the point M.

Because the line MC passes through the point x', y' and the

point C, whose coordinates are

y = 0, x — ACz=A,

we have, by art 121,

tang-" = F=^i ; <275>

and, because the line MC passes through the point x' y' and

the point C", whose coordinates are

y = 0, x — — 4,

we have

tang-P = jqjTZ ; (276)

hence

tang. I = tang. (/*— «) = i?^i l^BiLL
s 6 v

; 1+ tang. <* tang. /s

2 Ay'

%l2—.A2+y<2
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But, by (68),

and, therefore,

A2

ZAB*yi 2AB 2
,rtl^

172. Corollary. The product of (275) and (276) gives by

the substitution of

B2

y>* =± -
2
(A* - **)

tang, a . tang. ^= — —

,

(278)

which is the condition that must be satisfied by the two angles

a and p, in order that two lines CM and CM 1

, drawn from

the two points M and M', may meet upon the curve.

Two such lines are called supplementary chords;

so that (278) is the condition which expresses that two

chords are supplementally.

173. Corollary. If equation (278) is compared with (72),

it is found to be identical with it ; so that the condition that

two chords are supplementary is identical with the condition

that two diameters are conjugate.

If then a given chord, as CM, is parallel to a given

diameter B 1AB 1 , the chord CM, supplementary to

CM, is parallel to the diameter C 1AC'1} conjugate to

B XAB\.

174. Problem. To draw a diameter, which is conju-

gate to a given diameter.

11*
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Solution. Let B
1
AB\ (fig. 45.) be the given diameter.

Through C draw the chord CM parallel to B
1
AB\\ join

CM and the diameter C^C'^ which is drawn parallel to

CM, is, by the preceding article, the required diameter.

175. Problem. To find the magnitude of the angle

formed by two chords drawn from a point of the hyper-

bola to the extremities of its transverse axis, which are

called supplementary chords.

Solution. The solution is the same as that of art. 177, ex-

cept in regard to the sign of J52 , which being changed gives

for the required angle I

2AB2
'

176. Corollary. The corollaries of arts. 172, 173,

and the construction of art. 174, may then be applied

to the hyperbola, and equation (88) is the condition

that two chords are supplementary.

177. Theorem. The chords which are drawn parallel

to the conjugate of any diameter of an ellipse or hyper-

bola are bisected by it.

Proof. For each value of x there are two equal values of y,

one positive the other negative, which are, in the ellipse,

y = ±^V(4 2 -*2
)

and, in the hyperbola,

j = ±^V(«! -i!
);
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so that if for the value of x equal to AP (fig. 46.), the line

MPM' is drawn parallel to the conjugate diameter, and if

PM, P M' are taken each equal to the absolute value of y,

the points 31, M' are upon the curve, and the chord MM',
which joins these points, is bisected at P.

178. Corollary. The same proposition and proof may
be applied to the parabola, using the word axis instead

of diameter.

179. Corollary. The chords drawn perpendicular to

either axis of an ellipse or hyperbola, or to the trans-

verse axis of the parabola are bisected by this axis.

180. Problem. To find the length of the chord

drawn through the focus of the ellipse, the hyperbola

or the parabola, perpendicular to the transverse axis

;

this chord is called the parameter of the curve.

Solution. I. Represent the parameter of the ellipse by

4p; and its half or the ordinate is 2p, the corresponding

abscissa being, by example 3, art. 98,

c = */{A 2 — B 2
) or c 2 — A 2 — B 2

.

Hence the equation of the ellipse gives

2Ap — B \/(A 2 — c2 ) = B 2

II. In the same way in the hyperbola we should find the

same values of 2jp and 4 p.
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Tangent.

III. In the parabola whose equation is

y
2 s== 4p x

the abscissa for the parameter is p ; at which point

y 2 —. 4p 2
} y ~2p

parameter = 4p.

181. Corollary. In the ellipse or hyperbola, we have

A : B z= B :2p

or 2A : 25 = 25 : 4p;

so that £Ae parameter is a third proportional to the

transverse and conjugate axes.

182. Theorem. The line draxon through either ex-

tremity of a diameter of the ellipse or hyperbola, parallel

to the conjugate diameter, is a tangent to the curve.

Proof For the two values of y are equal to zero at

the point, so that either of these lines has only one

point in common with the curve.

183. Problem. To draw a tangent to the ellipse or

hyperbola at a given point of the curve.

Solution. Join the given point M to the centre A. Through

the extremity C of the transverse axis draw the chord CM 1

parallel to AM. Join CM, and the line drawn through the

parallel to CM is, by arts. 179 and 175, the required tan-

gent.

184. Scholium. The drawing of tangents to these

curves will be more fully treated of in a subsequent

chapter.
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185. Problem. To reduce the general equation of the

second degree in space to its simplest form.

Solution. I. Substitute the equations (40, 41, 42) in (200),

making

fl = 0, 6 = 0, c = ;

so that the direction of the axes may be changed without

changing the origin.

If we represent the coefficients of x\, y\ y
z\, x lt y lt z

x
by

ij=i COS.2 a + B COS. « COS. a'

-f- C COS.2 «'

-f-D COS. « COS. a" -\- E COS. a' COS. a"
-f- -FcOS.

2 a"

B1= A cos.2 /? + B cos. p cos. /s' + Ccos.2 ^

+ D cos. |S cos. /s"+ JB cos. /s' cos. /?"+ JFcos.2 /J"

C
x

z=z A cos.2 y -\- B cos. y cos. y'
~f- C cos.2 y'

+ D cos. y cos. y" -\-E cos. y' cos. y" -f- -Fcos.
2 y"

jfiT
x
= ii" COS. a -f- I COS. «' + X COS. a"

I
x
—H cos. /9 + J cos. F + K cos. /J"

K
x
= H cos. y -}- 7 cos. y' + -K" cos. y"

and take a, <s
}
y, a', ,*', y', a", /?", y" to reduce the coefficients

°f x
i V \>x \

z\* V

\

z \ t0 zero
i
tnat is

>
t0 satisfy the equations

= 2A COS. « COS. j5+ 2 CCOS. a! COS. /*'+ 2 FCOS. a" COS. |S"

4-jB(c0S.aC0S.
1̂

/-(-C0S.a/
C0S.

1'5)-|-Z)(c0S.«COS.^
//-|-C0S.«//

C0S.^)

+ E (cos. a' COS. »" + COS. a" COS. ?') (280)

= 2 J. cos. a cos. y+ 2 Ccos. a' cos. y'+ 2 i^cos. «" cos. y"

4~-B(cos.acos./-(-cos.« /cos.y)-|—D(cos.acos.y //
-f-cos.«

//
cos.y)

+E (cos. «' cos. y" + cos. «" cos. y') (281

)
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= 2 A cos. p cos. v+ 2 Ccos. /s' cos. y
1 -\-2E cos. |8" cos. y"

+.B(c0S.(?C0S./-}-C0S./5/C0S.y)-(--D(C0S.i5c0S.//
-|-C0S..'s//C0S.y)

+ E (cos. ?' cos. y" + cos. ?" cos. /) (282

which, combined with the six equations (44-49), completely

determine the values of these quantities, equation (200) be-

comes

A^+B^+C^+H.x.+I.y.+K.z.+M^O. (283)

II. Substitute the equations (53-55) for changing the origin

to the axes x2 , y 2> z2 , and (283) becomes

A
i
* 22+B

1
y*+C

1 zi + {ZA
1
a + H1

)x2

+ (2B
1
b+ I

1 )y 2+ (2C
1
c+K 1

)z
1
+3T

1
=0

> (284)

M
1
==A

1f+B 1
l^+C

1
c^-H

l
a+I

l
b+K

1
c+M

9

and in which if a, b, c are taken to satisfy the equations

2il
1
a + JHT

1
=0 (285)

2J5
1 6+ I

x
= (286)

2 C
x

c + K, = (287)

(284) becomes

^i *§ + #i y| + ^i *i +^ = o. (288)

186. Corollary. If we take

L — 2 A cos. « + 5 cos. a'+ D cos. «" (289)

L'= 2 Ccos. «'+ jB cos. « + E cos. «" (290)

Z"= 2 .P cos. «"+ i> COS. a-\- E COS. «'. (291

)

These values may be substituted in (280), (281), and the

double of the value of A lt and they give
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2 A
2
= L cos. a + L cos. «' + L" cos. «" (292)

= L cos. (S

-f L' cos. |S' + L" cos. /?" (293)

= 1 cos. y + £' cos. / + L" cos. y". (294)

If (292) is multiplied by cos. a, (293) by cos. ?, and (294)

by cos. y, the coefficient of L in the sum of the products is

by (47) unity, while those of L' and L" are by (50) and (51)

zero, so that this sum is by (289)

2 A , cos. « = L= 2 A cos. a-\-B cos. a!
-f- D cos. a", (295)

or 2(A
1
—A)cos.a— Bcos.a'— Dcos.a" = 0. (296)

If (292) is multiplied by cos. «', (293) by cos. s', and (294)

by cos. /, the sum of the products is, by (48, 50, 52, 290),

24'j cos. a'— JJ — 2 Ccos. «' + .B cos. a+ E cos.«" (297)

or 2 (4 x
— C) cos. J—# cos. «— E cos. «"= 0. (298)

If (292) is multiplied by cos. a", (293) by cos. ?'*, and

(294) by cos. y", the sum of the products is, by (49, 51, 52,

291),

2A
1
cos.c^— L"—2Fcos.a"+ Dcos, a+ Ecos.a /

(299)

or 2(4
1
— F)cos.a"— j0cos.«— £cos«'— 0. (300)

If (296) is multiplied by 4 (.4
X
—C) (A

1
— F) — E*

,

(298) by 25(i
1
-P) + DE, (300) by 2Z>(^

1
— C)

-f- B^, the sum of the products divided by 2 cos. « is

4(^ 1 -^)(^ 1
-C)(^

]
-^)_^(^[

1
_^)

— B°-(A
1
— F) — D^(A

1
— C)—BDE= (301)

from which the value of A
x
may be found.
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187. Corollary, Since the value of B
t

is obtained from

that of A
x
by changing «, «', a1' into P, p', p", and since by

this same change and that of P, p', p" into y, y', y", and also by

that of y, y', r" into «, «', «", (280) is changed into (282), and

(281) into (280); it follows that these same changes may be

made in the equations from (295) to (301), and (301) will

become

±(B
1
-A)(B

1
-C)(B

1
-F)-E*(B

1
-A)

—B*(B
1
—F)—D*(B

1
— C)—BDE= (302)

from which B
x
may be found.

188. Corollary. Since the value of C
x

is obtained from

that of jBj, by making the same changes as in the preceding

article, and since, by these changes (282) is changed into

(281), and (280) into (282) ; it follows that these changes

may also be made in the equations obtained by the preceding

article, (302) will thus become

4( Cl -A)(C L
-C) (C

l
-F)-&(C

l
-A)

— B2(C
1
—F)— D*(C

1
— C)—BDE= (303)

from which C
x
may be found.

189. Corollary. Since the equations for determining

A v B lt C x
differ only in the letters which denote the

unknown quantities, and since these equations are of

the third degree, it is evident that A
1 , B lt C x

are the

three roots of the equation of the third degree

4(X—A)(X— C)(X—F)—E*(X— A)

—B*(X—F)— D*(X—C)—BDE=iQ. (304)
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190. Scholium. Every equation of the third degree has at

least one real root, so that one at least of the three quantities

A lt B 19 C±
must be real. If we assume this one to be .4^ the

corresponding values of cos. «, cos. «', cos. a", asdetermined by

equations (296, 298, 300), and the 1st of art. 90, are also real ; so

that equations (280) and (281) are satisfied without assigning

any values to <s, /*', p"
t y, /, r". If (282) is not also satisfied, let

its second member be represented by Z> 1? and equation (200),

instead of being reduced to the form (283), will become

+H1
z

1
+I

1 y l
+K

l
z

l + 3I=0.

If now the same transformation is effected upon this equa-

tion, so as to transform it to the axes of x
2 , y 2 , z2i the equa-

tion for determining A 2 , B 2 , C2 would be obtained from (304),

by changing A,B, C, D, E, F into A lt 0, B 1} 0, D lt Clt

(304) thus becomes

4(X—A
X
)(X—B

1
){X— CJ—D\(X—A 1 )= (305)

the roots of which are

X=A„
and X=i(B 1 + C

1)±WlD 3
1 + (B

1
-C

1Y] (306)

which are all real, so that the given equation can always be

transformed to the form (283), and all the roots of (304) will

be real.

191. Scholium. If either A
± , B lf or C

1
is zero, one of the

equations (285 - 287) is impossible, unless the corresponding

value of jtJ15 J1? or K
x

is zero.

192. Scholium. The three roots A li B x>
C

1
cannot all be

12
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zero at the same time ; for in this case (283) would be linear,

and would not be a reduced form of a quadratic equation.

193. Scholium. If A
±
and H

1
are both zero, the values of

b and c can be taken to satisfy equations (286) and (287), and

(283) is then reduced to

•B
1 y| + Ci^I+^1 = 0- (307)

194. Scholium. If A
x

is zero and H
x

is not so, b and c

can satisfy equations (286) and (287), and a can be taken to

satisfy the equation

M
x p 0,

so that (283) is then reduced to

£
1 y§ + C

1 *§ + ///*
1
=0. (308)

195. Scholium. If A
t
and B

x
are zero, c can be taken to

satisfy equation (287), and if either II
1

or I
1

is not zero,

a or b can be taken to satisfy the equation

M
x
= 0,

so that (283) is then reduced to

C
t zl + H ll2 + J, y2 = 0. (309)

But if both H
1
and I

x
are also zero, (283) becomes

C
±
z| + Mx

— 0. (310)

196. Scholium. If the values of A
l , B v Clt and M

x
have

all the same sign, (288) is impossible, and there is no locus.
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197. Corollary. If A lt B 1} C
x
have all the same sign,

which is the reverse of Miy
let A 2 , B 2 , C2 be so taken, that

(311)
1 _A

LL J_ B^ _1 CL
A\~~~Wl B 2~ Ml C2 ~~

lf~'

and the quotient of (288), divided by —Mir ia

-1-1+ %+l?l -*=<>
(
313

>

198. Corollary. If two of the quantities A 19 B r, Cx
have

the same sign with 3Ilf while the other one, which we will

assume to be A lf has the reverse sign, we will take

1 _A_L \ B^ _1_ C^
A 2 ~~ Ml B 2 ~~ Ml C%— "Ml

and the quotient of (288), divided by — Mlt is

(313)

<v2 ni 2 iy2

-4-ft—ct- 1=0 -
(314)

199. Corollary. If of the quantities A lt B lf C1} one,

namely C
x

, has the same sign with M lt while the other two

have the reverse sign, we will take

1 A, 1 % 1 <?•

A 2^2 Mt
' B%~ M

t

' CI'~ if,
(315)

and the quotient of (288), divided by — M1} is

V 2 V 2 % 2

A^ +B^-^- 1 ^ -
<
316

)^2 ^2 ^2

200. Corollary. The values of 2 J 2 , 2i? 2 , 2 C2 are
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called the axes of the surface in either of the three last

articles, so that the three different values of

*<M&
which are found from equation (304), are the semi-

axes.

201. Scholium. If M x is zero, the equations (311),

(313), and (315) are impossible, but in this case (288)

becomes

A *l + #i 3/1 + ^*1 = 0. (317)

202. Scholium. If A
x , B xi and C

x
have all the same

sign, (317) is only satisfied by the values

x2 = 0, y 2 = 0, z2 =: 0, (318)

so that the origin ofx2 , y2i z2 is in this case the re-

quired locus.

203. Corollary. If of the three quantities, A lf JB
t , Clf one,

as Clt is negative, while the other two are positive, we will

take

and (317) becomes

A % + %-i =Q - (320)

204. The form of a surface is best investigated by-

examining the character of its curved sections , which
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Examples of quadratic loci.

are made by different planes. The farther investiga-

tion of the surfaces, represented by quadratic equations,

will, therefore, be reserved for Chapter IX.

205. Examples involving plane quadratic Loci.

1. To find the locus of all the points in a plane, which are

so situated with regard to given points in that plane, that jf

the square of the distance of each point from the first given

point is multiplied by m, the square of its distance from the

second given point by m", &.c, the sum of the products is

equal to a given surface V.

Solution. Let the given points be, respectively, x', y'
;

x", y", &,c.

The distances of the point x, y from these points is given

by equation (23), and we have, by the conditions of the prob-

lem and using S, as in art. 141,

S.m' (a;— x') 2 + S.m' (y—y'f — V,

or

S.m' .x* + S.m' .y* — 2 S.m1
x' .x—2S.m'yf

.y

+ S.m>(x / z + y<2) — V= 0.

This equation is already of the form 201, and may be

reduced to the form (207) by making

S.m'x' S.m'y'
a - ~£^T' - ~S~mT

~

[(S.m')*— 2]. [(£.«i'z')9+ (#'*»'. y')9
]M

*
= —s^<

+ S.m'(x'2 +y'2)-V.

12*
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We have then for the axes, by (253),

so that the locus is a circle, the coordinates of whose centre

are — a and — b, and whose radius is A 2 .

Corollary. —M
x
and S.m' must be both positive or both

negative.

2. To find the locus of all the points in a plane, which are

so situated with regard to given lines in the plane, that if the

square of the distance of each point from the first given line

is multiplied by m lt the square of its distance from the second

line by M2 , &c, the sum of the products is equal to a given

surface V.

Solution. Let the given lines be respectively

sin. <*

1
x — cos. «

1 y = — p x

sin. «
2 x — cos. «

2 y = — p 2> &c.

The distances of the point x, y of the locus from these lines

is given by equation (170), and give, by the conditions of the

problem, and using S as before,

S .m
l
(sin. «

\ . x— cos «
± . y — p 1 )

2 = Vj

which, developed and compared with equations (199 - 256),

give A j and B
x
as the roots of the equation

4^T2—4>Sf.m
1
JT+4>S,

.m
1
sin. 2 «

1
>S'm

1
cos2

a
1
~-(jS

,

»«
1
sin.2« 1 )

2=0,.

and to find «,

_ S .m. sin. 2 «,
tan.2« = ^—! —-i,

& ,m
x
cos. 2 «

x

and the values of a
)
b

i
m

x
may be found by equations (208-210).



<§> 205.] QUADRATIC LOCUS. 139

Examples of quadratic loci.

3. To find the locus of the centres of all the circles which

pass through a given point, and are tangent to a given line.

Ans. A parabola of which the given point is the focus, and

the given line the directrix.

4. To find the locus of the centres of all the circles, which

are tangent to two given circles.

Ans. When the locus is entirely contained within one of the

given circles, it is an ellipse of which the foci are the two

given centres, and the transverse axis is the sura of the two

given radii. Otherwise, it is an hyperbola, of which the foci

are the two given centres, and the transverse axis the differ-

ence of the two given radii, if the contacts are both external

or both internal, and their sum, if one of the contacts is exter-

nal and the other internal ; and it may be remarked, that the

contact with either of the given circles is external upon one

branch of the hyperbola, and internal upon the other.
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Similar ellipses.

CHAPTER VIII.

SIMILAR CURVES.

206. Definition. Two curves are said to be similar

when they can be referred to two such systems of

rectangular coordinates, that if the abscissas are taken

in a given ratio, the ordinates are in the same ratio.

207. Corollary. If the given ratio is m : w, and if the co-

ordinates of the first curve are x, y, the corresponding ones of

the second curve must be

nx ny
m i m '

so that if these values are substituted for the coordinates in

the equation of the second curve, the equation obtained must

be that of the first curve.

208. Theorem. Two ellipses or two hyperbolas are

similar, if the ratios of their axes are equal.

Proof. I. Let the semiaxes of the two ellipses be A, B
and A', B 1

, we have, by hypothesis,

A : A' .== B : B
$

and the equations of these ellipses are (68)

A 2 ^ B 2
~~

_
x
_l 4. II - 1 •

A>2
1"

b<2
—

'

;
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Radii vectores of similar curves.

and if, in the second equation, we take the coordinates in the

A'x
ratio equal to that of the axes, that is, substitute for x, ——,

A.

B'ii A'v
and for y, —- z= —- ; it becomes identical with the first

equation.

II. The same reasoning may be applied to the hyperbola

;

but it must be observed, that the ratios of the transverse axes

must be equal to that of the conjugate axes in the two hyper-

bolas ; and the theorem must not be applied to the case in

which the ratio of the conjugate axis of the first curve to the

transverse axis of the second is equal to that of the transverse

axis of the first curve to the conjugate axis of the second

curve.

209. Theorem. The radii vectores, which are drawn
in the same direction to two similar curves, are in the

same ratio with the corresponding coordinates.

Proof. If x and y are the coordinates for the first curve,

and %' and y' the coordinates for the second curve, taken as

in art. 207, we have

x x 1

y
~~

y
1

'

so that, by (11), the angle <p— «, which determines the di-

rection of the radius vector drawn to the point x, y, is equal

to the angle which determines the direction of the radius

vector drawn to the point x', y'. These radii vectores must,

therefore, coincide in direction, and we have for their values

r — x sec. (q>— «) }
r' = x' sec. (y— «)

jl ~ jl _ y_

r' x' v1
'
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Similar surfaces and solids.

210. Similar surfaces may be defined in the same

way as similar curves, and are subject to propositions

precisely like those of arts. 207 and 209.

Similar solids are solids bounded by similar sur-

faces.
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Section of surface by a plane.

CHAPTER IX.

PLANE SECTIONS OF SURFACES.

211. Problem. To find the section of a surface made

by a plane.

Solution. I. If the cutting plane is one of the coordinate

planes, ihat of xy, for instance, the points of the section are

all of them in this plane, and we have, therefore, for all these

points

z = 0,

so that we have only to substitute zero for z in the

equation of the surface to find the equation of the inter-

section with the plane of x y. In the same way by

putting

x =

the intersection with the plane of y z is found, and the

intersection with the plane of x z is found by putting

y = 0.

II. For any other plane the intersection is found by trans-

forming the coordinates of the surface, to a system of which

the cutting plane is one of the coordinate planes. If the

cutting plane is supposed to be the plane of x
1 y 1} we shall

be obliged to put
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after substituting the equations (40 - 42) for the transformation

of coordinates. But a useless operation is avoided by putting,

at once,

z
l
=

in the equations for transformation.

The required equation is, then, obtained by substitut-

ing in the given equation of the surface the equations

x — a -\- x
x
COS. a -\- y x

COS.
p (321)

y z= b + x
x

cos. «' -|- y t
cos. /»' (322)

z — c-\-x
1
cos. «"+ y x

cos. P". (323)

In which a, b, c are the coordinates of a point of the

cutting plane which is the origin of x
x
and y x , «, «', «",

and P, P', P" are the angles which the two axes of x v y x

make with the given axes.

212. Corollary, If the cutting plane is parallel to the

plane of x y, the axes of x
1
and y 1

may be taken parallel to

the axes of x and y, and the origin may be taken in the axis

of z, so that the equations (321 -323) become

x — x lt y =zy 1} z— c. (324)

If the cutting plane is parallel to the plane of y z, we have in

the same way

x — xu y =zb, z — z
x \ (325)

and if it is parallel to the plane of y z, we have

x = a
f y =zy 1}

z=z zv (326)

213. Corollary. If the cutting plane passes through the

axis of x, the axis of x may be taken for that of x lt and the
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origin may remain as it was. In this case equations (321 -

323) become

x = x19 y = y x
cos. H', z = y x

sin. p'. (327)

If the cutting plane passes through the axis of y, and if

the axis of y is taken for that of x
1 , (321-323) become

x = y t
cos. P, y == x lt z =: y x

sin. p. (328)

If the cutting plane passes through the axis of z, and if the

axis of z taken for that of x lt (321 - 323) become

x = y x
cos. ?, y = y x

sin. ?, z — x
t . (329)

214. Problem. To find the section of a surface of the

second degree made by a plane.

Solution. The equation (200) is the most general equation

of the surface of a second degree. It may then be regarded

as the equation of the surface referred to coordinate planes, of

which the plane xy is the cutting plane. By putting

z = 0,

we have then for the required section

Ax2+Bxy + Cyl+H x + I y + M=z 0. (330)

From the discussion (201-262), it follows that if

B2 — 4AC<0

the section, if there is one, is a point or an ellipse. But if

B 2 — AAC—
it is a parabola, a straight line, or a combination of two paral-

lel straight lines But if

B 2 — 4^C>0
it is an hyperbola, or a combination of two straight lines.

13
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215. Corollary. For the section which is parallel to the

plane of x y at the distance c, we have by (324) putting

H
1
= Dc + H (331)

I
i
—Ec + I (332)

M
1
— Fc^ + Kc + M (333)

AzZ+Bz^^CyZ+H^t+I^t+M^O; (334)

so that this section is in the same class with that made
by the parallel plane of x y, so far as it depends upon

the value of B 2 — 4 AC.

216. The values of A
x
and B

x
depend by (220, 231) only

upon those of -4, B,, C, so that the ratios of the semiaxes

A 2 and B 2 must also depend only upon A, B, C, and be the

same for all the parallel sections of the quadratic locus.

Hence, if one of the sections of a quadratic locus is

an ellipse, all the parallel sections must be similar el-

lipses, except those which are points.

If one of the sections is an hyperbola, all the curved

parallel sections are hyperbolas ; and all those sections

are similar whose greater axes are transverse ; and also

those are similar whose greater axes are conjugate.

If one of the sections is a parabola, all the curved

sections which are parallel to it are parabolas.

In all the parallel sections the axes are parallel.

217. Problem. To investigate the form of the sur-

face of equation (312).

Solution. The numbers below the letters were only used to

distinguish the different axes of coordinates; they may, then,

be omitted, and (312) may be written

x2 v 2 z2
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Ellipsoid.

I. The equation of the section parallel to the plane of x y
at the distance c from the origin is

2 c <

-ji +^+c*- 1 -
' (336 >

which is impossible when

C2 > C2

it is the point

|, = 0, yi =
when c = C,

and it is the ellipse whose semiaxes are

:£ V(C^ - e»), ^ </{& - ^) (337)

when c 2 < C2
.

II. The sections parallel to the planes of x z and y z are

easily found in the same way, and it is evident that the sur-

face is included by eight planes, of which two are drawn

parallel to the plane of xy at the distances -f- C' and — C,

two parallel to the plane of xz at the distances -\-B and— B,
and two parallel to the plane of y z at the distances -)- A and

— A.

III. The section made by any other plane must then be

limited, and must therefore be an ellipse or a point, so that

this surface is called that of an ellipsoid, whose semiaxes are

a, b} a

IV. The section made by a plane passing through the axis

of x, and inclined by an angle ?' to the axis of y is, by (327),

x 2 /cos.2 ,*' sin 2 *'V

-ii+(-i^+-c^H- i = o
- <

33S
>
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It is, therefore, an ellipse, whose semiaxes are A and

/ COS.V BiD.»f\ BC
1

' V V-B 2 ^ C2 f~ V(C^os.^'+B^m.^'Y K°
'

or if we substitute for cos. 2 P' its value, the second semiaxis is

BC
V[C2 + (^2— C2)sin.2/5']-

(
34°)

The ellipsoid may, then, be considered as generated by the

revolution of an ellipse about the axis of x, the semiaxis of

the ellipse, which corresponds to the axis of x, remaining con-

stantly A, and the other axis changing from B to the value

(339).

The sections made by planes passing through the axes of

y and z may be found in the same way.

818. Corollary. If we have

B = C

the semiaxis (339) becomes equal to B, so that the el-

lipse retains the same value of its second axis as well

as of its first, during its revolution ; and the ellipsoid

is one of revolution. The sections made by planes

parallel to the plane of y z are, in this case, circles.

219. Corollary. If we have

A = B = C

the revolving ellipse is a circle, and the surface is that

of a sphere.

220. Problem. To investigate the form of the sur-

face of equation (314).
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Hyperboloid.

Solution. By omitting the numbers below the letters, (314)

may be written

x2 y
2 z2

5C ~~
Ti*

""
~c2

1 = 0. (341)

I. The section, parallel to the plane of x y, at the distance

c from the origin is, by (253, 261), an hyperbola, of which

the semitransverse axis, which is parallel to the axis of x, is

^/( c2_)_ C2
), and the semiconjugate is ^?V(c2+C2 ).(342)

II. The section, paralleUto the plane of xz, at the distance

b from the origin, is an hyperbola, of which the semitransverse

axis is parallel to the axis, and is

A C
^(62 i jg2\ and the semiconjugate is —\/(&2+-B2

)- (343)B B

III. The equation of the section, parallel to the plane of

y z, at the distance a from the origin, is, by reversing the

signs,

1,2 2 2 n 2

so that when a 2 < A2

the section is imaginary, that is, none of the surface is con-

tained between the two planes drawn parallel to the plane of

y z, at the distances -|- -4 and — A ; so that the surface con-

sists of two entirely distinct branches, similar to the two

branches of an hyperbola.

When a 2 = A2

the section is reduced to the point

y = 0, z = 0;

when a2 > A 2

13*
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Hyperboloid of two branches.

the section is an ellipse, of which the two semiaxes are

B^/^— A*) and ^V(« 2—^ 2
)« (345)A A

IV. The section made by any plane, which cuts both branch-

es, is evidently an hyperbola, for no other curve of the second

degree is composed of two branches. The section made by a

plane, which cuts entirely across either branch without cut-

ting the other, is an ellipse ; for this is the only curve of the

second degree, which returns into itself, so as to enclose a space.

The section made by a plane, which cuts one branch without

entirely cutting across it, and without cutting the other branch,

is a parabola ; for this is the only endless curve of the second

degree, which consists of only a single branch. This surface

is called that of an hyperboloid of two branches.

V. The equation of the section, made by a plane passing

through the axis of x and inclined, by an angle pf t
to the axis

of y is, by (327),

It is, therefore, an hyperbola, whose semitransverse axis, di-

rected along the axis of Xj is A, and whose semiconjugate

axis is precisely that of (340). This hyperboloid may, then,

be regarded as generated by the revolution of an hyperbola

about the axis of x, the semitransverse axis remaining constant,

and the semiconjugate axis changing in such a way, that its

extremity describes an ellipse, whose semiaxes are B and C.

VI. The section, made by a plane passing through the axis

of y, and inclined by an angle (? to the axis of .t, is, by (328),

(cos.2 /? • sin.9 /?

~A^ W )n-3~ 1=0
-

(347)
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When, therefore,

.„ 2 a c\n 2

->ocos.2 ,^ sin.2 ?

~A* C2

or tang. 2;<-p (348)

the section is an hyperbola, of which the semitransverse axis is

4.C
, and the semiconiugate is B. (349)

v/(C-
5
cos.2 ;—

^

2 sin.2^)'
J s v

'

C2

When tang.2 § «= -p-

the section is impossible, but every parallel section is a para-

bola.

C2

When tang.2 s >_
the section is impossible, but there are parallel sections which

are ellipses.

In the same way and with like results, the sections may be

found made by planes passing through the axis of z.

221. Corollary. If we have

B = C

the semiaxis (340) becomes equal to B
}

so that the

revolving hyperbola retains the same value of its second

axis as at first, and the hyperboloid is one of revolution

about the transverse axis. The sections made by planes

parallel to the plane of y z are, in this case, circles.

222. Problem. To investigate the form of the sur-

face of equation (316).
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Solution. By omitting the numbers below the letters, (316)

may be written

n-2 11/2 %2

iP+h-w-" 1 =
-

(350)

I. The section, made by a plane parallel to the plane ofxy,

at the distance c, is an ellipse, of which the semiaxes are

-^ V(c* + (P) and *
V(«=

2 + <"). (351)

II. The section, made by a plane parallel to the plane of

x z
t
at the distance 6, is when

b 2 <B 2

an hyperbola, of which the transverse semiaxis is parallel to

the axis of x, and is

A C
-— */{B2— b2 )> and the semiconjugate is — \Z(B^-¥). (352)

When b 2 = B 2

the section is the combination of the two straight lines

5=7*1? (353)

When b 2 > B 2

the section is an hyperbola, whose semitransverse axis is par-

allel to the axis of z, and is

ri A
Z-y/fJP— B*), the semiconjugate is— \/(62— J52 ). (354)

In the same way and with like results, the sections may be

found made by a plane parallel to that of y z.
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III. The curved section made by any other plane is an

hyperbola when it consists of two branches, an ellipse when it

is limited, and a parabola when it consists of one infinite

branch.

IV. The equation of the section, made by a plane passing

through the axis of x and inclined, by an angle Z
5', to the axis

of y, is

a+(
C
-
O#--^>f-1=0. (355)

When Sgj^-g^ij

or tang.V<-^L (356)

this section is that of an ellipse, whose semiaxes are

A aDd
V(C»cos.»/f—5*sin.»n'

(357)

C2

When tang. 2 /»/ —_ (358)

the section is reduced to the two parallel straight lines

x1 = dtzA

drawn parallel to the axis of y\. Any parallel section to this

one is a parabola.

C2

When tang. 2
/*' >— (359)

the section is an hyperbola, whose transverse semiaxis is in

the direction of the axis of x, and is

4, the semiconjugate is ^{WsiaH,_ C2c0s??)
(360)
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Hyperboloid of revolution.

In the same way, and with like results, the sections may be

found, made by a plane passing through the axis of y.

V. The equation of the section, made by a plane passing

through the axis of s, and inclined, by an angle /s to the axis

of x, is by (329)

(cos.2 /? ; sin. 2 /?\ n x2. ,
'

. Inn x

This section is, therefore, an hyperbola, whose semiconju-

gate axis directed according to the axis of z or x 19 is

AB
C, while the semitransverse is - (362)

V{-° cos
« H"-^ sm

*

AB
or the semitransverse axis is

s/[B2+{A2_B 2 )sin^ (
363

)

This hyperboloid may, then, be regarded as generated by the

revolution of an hyperbola about its conjugate axis C, the

extremity of the transverse axis describing the ellipse, whose

semiaxes are A and B.

223. Corollary. If we have

A = B
the semiaxis (363) becomes equal to A, so that the re-

volving hyperbola retains its original axes, and the

surface is that of an hyperboloid of revolution. The
sections made in this case, by a plane parallel to the

plane of x y, are circles.

224. Problem. To investigate the form of the surface

of equation (320).

Solution. By omitting the numbers below the letters, (320)

may be written

31+&-£ = «• <
364

)



«§> 224] PLANE SECTION OF SURFACES. 155

Cone.

I. The section made by a plane parallel to the plane of xy,

at the distance c, is an ellipse, of which the semiaxes are

Ac Be /rt„_
-q- and —- ; (365)

when the distance c is zero, this ellipse is a point.

II. The section, made by a plane parallel to the plane of

of x z, at the distance c, is an hyperbola, of which the semi-

transverse axis, parallel to the axis of z, is

C& 3 , . . Ab—- and the semiconjugate -—

.

(366)

This section becomes the combination of the two straight

lines

Cx = ±Az, (367)

when b is zero.

III. The section, made by a plane parallel to the plane of

y z, at the distance a, is an hyperbola, of which the semi-

transverse axis, parallel to the axis of z, is

Ca' . . Ba
—j- and the semiconjugate —-. (368)

This section becomes the combination of the two straight

lines

Cy — ^iBz, (369)

when a is zero.

IV. The equation of the section, made by a plane passing

through the axis of x, and inclined by an angle p' to the axis

of y, is

x\ /cos. 2 ?' sin.2^\

T»+(-£i pr-)y?=° (370)
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Cone.

When the condition (356) is fulfilled, this section is re-

duced to the point

x
x
= 0, y x

= 0.

But every section parallel to this one is an ellipse.

When the condition (358) is fulfilled, the section is reduced

to the straight line

that is, to the axis of y 1 \ and every section parallel to this is

a parabola.

When the condition (359) is fulfilled, the section is the

combination of the two straight lines

x. ./sin. 2/?' cos.Vv ,_.

and every section parallel to this is an hyperbola.

In the same way, and with like results, the sections made

by a plane passing through the axis of y may be found.

V. The equation of the section, made by a plane passing

through the axis of z, and inclined by an angle /s to the axis

of x, is by (329)

so that this section is the combination of the two straight

lines

x
i , 7

/cos.2|S sin. 2 ?\

which are inclined at equal angles on opposite sides of the

axis of x
x

.
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Conic sections.

This surface may then be regarded as generated by a straight

line which passes through the origin, and revolves about the

axis of z, inclined to this axis by a variable angle, whose tan-

gent is

AB
m

the surface is therefore that of a cone.

225. Corollary. If A and B are equal, the axes

(366) are equal, and the section parallel to x y is a

circle: and the tangent (373) of the angle which the

revolving lines makes with the axis of z, becomes

A
C"

so that its value is constant, and the cone is a right

cone.

226. All the curves of the second degree may then

be obtained by cutting a right cone by different planes,

these curves are therefore called conic sections.

From examining section iv. of art. 224, it appears

that the section of a right cone is an ellipse, when the

plane cuts completely across the cone, so as not to meet

the cone produced above the vertex ; it is a parabola,

when the plane is parallel to one of the extreme sides

of the cone, so as not to meet it, nor the cone produced

above the vertex ; it is an hyperbola, when the plane

cuts the cone both above and below the vertex.

227. Problem. To investigate the form of the surface

of equation (307).

14
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Paraboloid.

Solution. By omitting the numbers below the letters, (307)

becomes

By* + Cz* +31=0. (375)

The equation of the section made by a plane parallel to the

plane of yz is, then, the same with (375), so that the surface

must be a cylinder, of which (375) is the equation of the

base.

228. Problem. To investigate the form of the sur-

face of equation (308).

Solution. By omitting the numbers below the letters, (308)

becomes

By 2 + Cz* + Hx = 0. (376)

I. The section made by a plane parallel to the plane of y z

is an ellipse or an hyperbola, and those made by planes parallel

to the planes of x y and x z are parabolas.

II. The equation of the section, made by a plane passing

through the axis of x, and inclined by an angle ?' to the axis

of y, is

(B cos.2 /J/ + Csin. 2
/*') y \ + Hx

x
= 0, (377)

so that it is a parabola, of which the vertex is the origin, and

the parameter

IT

2i? = "" 2(5cos.2|J'+Csin.2|*')'
(3?8)

The surface may then be considered as generated by the

revolution of a parabola, with a variable parameter, about the

axis of Zj. It is, hence, called a paraboloid.
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Cylinder.

229. Corollary. If B and C are equal, (378) becomes

*P =-"S ' (379)

so that the parameter is no longer variable, and the

paraboloid is a paraboloid of revolution.

230. Problem. To investigate the form of the surface

of equation (309).

Solution. By omitting the numbers below the letters, (309)

becomes

Cz* + Hx + Iy=zO. (380)

Before proceeding to investigate the sections of the surface,

we may refer it to other axes, which have the same origin, of

which the axis of z
1

is the same with the axis of z, and the

plane of x
1 y 1

the same with the plane of xy. In this case,

we have

a = b =. c = 0,

an _ $1 _ y __ yl _ 90o^
Y
H __

(5' — «, /S — 90° + «, a' — a — 90°,

so that (40, 41, 42) become

x = x
L

cos. « — y\ sin. a (381)

y = x
x

sin. «
-f- # i cos» a (382)

z = ?ll (383)

which being substituted give, by taking a to satisfy the con-

dition that the coefficient of y x
is zero,

Cz\ + (JEf cos. o + I sin. «) x, = 0, (384)
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Two planes.

in which « is determined by the equation

tang. a = —

.

(385)

The equation of the section, which is made by a plane par-

allel to the plane of %
x
z 1} is now the same with (384) ; that

is, the section is a parabola, and the surface is that of a cylin-

der, of which the base is a parabola.

231. Problem^ To investigate the form of the surface

of equation (310).

Solution. When (310) is possible, it is evidently the combi-

nation of the two equations

»a =±V—

5

1 (386)

each of which represents a plane parallel to the plane of a:2 y2 .
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BOOK II.

DIFFERENTIAL CALCULUS.

CHAPTER I.

FUNCTIONS.

1. A variable is a quantity, which may continually

assume different values.

A constant is a quantity, which constantly retains

the same value.

Thus the axes of an ellipse or hyperbola are constants,

while the ordinates and abscissas are variables.

Constants are usually denoted by the first letters of the

alphabet, and variables by the last letters, but this notation

cannot always be retained.

2. When quantities are so connected together that

changes in the values of some of them affect the values

of the other, they are said to be functions of each other.

Any quantity is, then, a function of all the quantities

upon which its value depends ; but it is usual to name

only the variables of which it is a function.

Functions are denoted by the letters f.,f., F.
} (p., V«, n"if-\

F.', / ., /,., &c ; thus

/.(*), F(Z), 9.{Z), „.{x), &C,/.'(S), &C., fA*)*M*)i fA*)>
&/C are functions of x.
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Independent variable. Construction of function.

f.(x,y), JP.(x,y), &C.

are functions of x and y.

3. When variables are functions of each other, some

of them can always be selected, to which, if particular

values are given, the corresponding values of all the

rest can be determined. The variables, which are thus

selected, are called the independent variables.

4. When a function is actually expressed in terms of

the quantities, upon which it depends, it is called an

explicit function.

But when the relations only are given, upon which

the function depends, the function is called an implicit

function.

Thus the roots of an equation are, before its solution, im-

plicit functions of its coefficients ; but, after its solution, they

are explicit functions.

5. A function of a variable may be expressed geo-

metrically, by regarding it as the ordinate of a curve,

of which the variable is the abscissa.

A function of two variables may be expressed geo-

metrically, by regarding it as one of the coordinates of

a surface, of which the two variables are the other two

coordinates.

A function is said to be constructed, geometrically,

when the curve or surface, which expresses it, is con-

structed.

The inspection of the curve or surface, which thus repre-
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Algebraic, logarithmic, trigonometric functions.

sents a function, is often of great assistance in obtaining a

clear idea of the function.

6. Algebraic functions are those which are formed

by addition, subtraction, multiplication, division, raising

to given powers, whether integral or fractional, positive

or negative.

An integral function is one, which contains only in-

tegral powers of the variable ; and a rational fractional

function is a fraction, whose numerator and denomina-

tor are both integral functions.

Every other algebraic function is called irrational.

Thus

a -{- x, a — x, ax -\-by, a-\-bx-\-cx 2 -\- &c.

are integral functions

;

a a -\-b x-\- ex2

? T~*
i a'+b'x+c'x2

are rational fractional functions ;

and \Zz, zj, &c.

are irrational functions.

7. Exponential or logarithmic functions involve va-

riable exponents or logarithms of variables.

Thus, ax , log. x, &c. are logarithmic or exponential func-

tions.

8. Trigonometric or circular functions involve trigo-

nometric operations.
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Compound, free, fixed, linear functions.

Thus sin. x, tan. x, &c.

are trigonometric or circular functions.

9. Compound functions result from several succes-

sive operations.

Thus log. sin. x is the logarithm of the sine of x.

10. When functions are so related, that the com-

pound function formed from their combination is inde-

pendent of the order in which the functional operations

are performed, the functions are said to be relatively

free ; otherwise they are fixed.

Thus if the two functions <p and f are so related that the

compound function <p.f.x is equal to the compound function

f. <p. x, these two functions are relatively free, and this con-

dition is algebraically

<P.f.x=fi<p.x; (387)

or if we omit the variable, which is often done in functional

expressions which involve but one variable, (387) becomes

<P.fi =fi<P. (388)

11. A linear function is one, which leads to the same

result, whether the operation indicated by it is perform-

ed upon the whole of a polynomial at once, or upon the

different terms of it successively.

Such a function is indicated by the equation

fi(x±y)=f.x±fiy; (389)

and the product m x, that is, in times the variable, is a simple

example of such a function.
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Repeated functions.

12. Theorem, The compounds of linear functions

are linear.

Proof. Let/ and/' be two linear functions, we are to prove

that

///(«±.y) = ffJx±ffJy. (390)

Now we have from definition

f.'{*;±y) ***/><?%/.% (391)

and therefore

.f.f.'(x±y) =f.(f.'x±f.>y)=f.fjx±f.f.<y (392)

as we wished to prove.

13. When the same operation is successively repeat-

ed, the result is called the second, third, fyc. func-

tion.

Thus the log. log. x is the second logarithm of x.

These repeated functions may be expressed by a notation

similar to that of powers ; thus

log. 2 x = log. log. x

log. 3 x = log. log. 2 x = log. log. log. x, &c.

f.*X=f.f.X

fJX=ff.2X=fff X) &C.

Care must be taken not to confound fn (x) with [f(x)] n
, or

with f(x)n
, which have widely different significations ; thus,

[f(x)]n is the nth power of the function of x, f(x) n is the

function of the wth power of x, while fn (x) is the wth func-

tion of x.

The common use of a different notation in the case of trigo-

nometric functions must, however, cause them to be excepted
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Zero function.

from these remarks ; thus, sin. 71 x and sin. xn do either of them

denote the nth power of sin. a:. Whenever we extend this

notation to trigonometric functions, we shall indicate it by en-

closing the exponent within brackets ; thus we shall denote the

second, third, &c. sine of x by sin.t2] x, sinPJx, &.c.

14. By a process of reasoning, precisely similar to

that used in the case of powers, it may be proved that

we must have

f.
mf.n x=if.m + n x; (393)

or, omitting the variable

fmfn—fm+ n, (394)

This equation may be adopted as applicable to all functional

exponents, whether positive or negative, entire or fractional

;

and the signification of the exponent, when not positive and

integral, must, in this case, be determined by the aid of the

equation.

15. Problem. To determine the signification of a

function, of which the exponent is zero.

Solution. Equation (393) becomes by making

m = 0,

f.ofnx=,f.« + *x=f.nx; (395)

so that if we put

f.
n x — y

we have f.°y z= y; (396)

that is, the function whose exponent is zero is the vari-

able itself, and this function may be represented by

unity.
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Negative and fractional functions.

16. Problem. To determine the signification of a

function, of which the expoiient is negative.

Solution. Equation (393) becomes, by making

m — — n

f.-"f»z=zf.°z=zz; (397)

or if we put

f.
n x = y,

we have

f-*y = z; (398)

that is, if two variables, x and y, are functions of each

other, whatever function y may be of x, x is the corre-

sponding negative function of y, or, as it is usually

called, the inverse function of y.

17. Confusion is likely to arise in the use of negative ex-

ponents, unless it is carefully observed that many functions

have, like roots, several different values corresponding to the

same value of the variable.

18. Problem. To determine the signification of a

function, of which the exponent is fractional.

Solution. We have, from (394)

fm
f.
m
f.
m

. . . z= ( f.m )
n —

f.
mn

in which n denotes the number of repetitions of f.
m

. If now
n>

n' =z mn, m z= —
n

fmn—fn'
mn n'

fs*=f.~T=fS

15
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Functions calculated like factors.

that is, if m is a fraction, of which the denominator is

n and the numerator n', the corresponding function is

one which, repeated n times, gives the w/th repetition

of the original function /.

19. Theorem. When the different functions of which

a compound function is composed are linear and rela-

tively free, they may be combined precisely as if the

letters which indicate them were factors instead of

functional expressions.

Proof. For the two equations (388) and (3S9), which apply

to this case, are the same in form as the two fundamental

equations of addition and multiplication, upon which all arith-

metical and algebraical processes are founded.

20. Corollary. The repetitions of the compound functions

f.+A; /+/> +U> &c.

in which f f1} f2 > &c - are linear and relatively free, may

be effected by means of the binomial and polynomial theorems.

Thus

(/. +/i .
)

n=/.n+w/.n-l/i .+^^/,l-
2/f .+&c . (399)

(f.+f1-+f2 ')
n=f'n+ nf'

n-1
fi-+ nf-

n-V2'+&*- (400)

»(— v-vf. + fcc.
1.2

21. The exponents of functions are so similar to the

exponents of powers, that they may be used in a similar

way, and called functional logarithms ; so that if any

function, as /., is assumed as a base, the functional log-
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Functional logarithms.

arithm of any other function indicates the exponent

which the base must have to be equivalent to this new
function.

Thus, if we denote functional logarithms by [f. log.], and

if /.* = y. (401)

we have n = [/. log.] 9. (402)

and it may be shown, as in the theory of logarithms, that

If. log.] <p. <p.<= [/. log.] y.+ £/. log.] f
.'

(403)

[/.]og.] 9.» = ii-[/log.]v. (404)

22. When a function has but one finite value corre-

sponding to each value of its variable, included between

given limits, and varies by infinitely small degrees for

infinitely small changes in the value of its variable be-

tween these limits, it is said to be continuous between

these limits.

The curve which represents a continuous function is obvi-

ously a continuous curve.
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Orders of infinitesimals.

CHAPTER II.

INFINITESIMALS.

23. Theorem. Any power of an infinitesimal is infi-

nitely smaller than any inferior power of the same

infinitesimal.

Demonstration. Let i be the given infinitesimal, a the ex-

ponent of the given power, and b the exponent of an inferior

power. We have, then, the ratio

ia : ib z=z i
â ~b

: 1
;

that is, i a bears the same ratio to i
b that 2**—J does to unity,

or i
a is infinitely smaller than i

b
.

24. Definition. If a given infinitesimal is assumed as

a base or standard to which all others may be referred,

any infinitesimal is said to be of the order a, when it is

infinitely less than any power of the base inferior to

the ath power, and infinitely greater than any power of

the base superior to the ath power.

25. Corollary. If A is a finite quantity, and i the

finitesimal which is assumed as

be an infinitesimal of the ath order.

infinitesimal which is assumed as the base, Ai a musi

26. Corollary. If, in the preceding article, we make

az=
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Negative orders of infinitesimals.

we have

Ai a z=z A i° z= A;

so that a finite quantity is an infinitesimal of the order

zero.

27. Corollary. If, in art. 12, we make a negative, or

a — — a 1

we have

Ai a = Ai—a == — = oc

. i
a

so that infinitely great quantities may be regarded as

infinitesimals of negative orders ; that is, an infinitely

great quantity of the ath order is an infinitesimal of the

— ath order.

28. Theorem. Of two infinitesimals of different or-

ders, that, which is of the inferior order is the infinitely

greater.

Demonstration. Let / and J be the two infinitesimals of

the orders a and b respectively, a being greater than b, and

let c be any number between a and b, and let i be the base.

We have, by the definition of art. 24, /infinitely less than i
c

,

and /infinitely greater than i
c
, so that lis infinitely less than

J, agreeably to the theorem to be demonstrated.

29. Corollary. When infinitesimals of different or-

ders are connected together by the signs of addition or

subtraction, all may be neglected but those which are of

the lowest order, so that the sum or difference is of the

same order with those of the lowest order, which are

retained.

15*
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Order of function of infinitesimal.

30. Corollary. The continued product of several in-

jinitesimals is of an order equal to the sum of the orders

of the factors.

31. Corollary. If one or more of the factors is

finite, the product is of the order equal to the sum of

the orders of the other factors.

32. Corollary. The order of the quotient of one infi-

nitely small quantity divided by another is equal to the

order of the dividend diminished by that of the divisor.

33. Corollary. The order of any power of an infini-

tesimal is equal to the order of the infinitesimal multi-

plied by the exponent of the power ; and the order of

any root is equal to that of the infinitesimal divided by

the exponent of the root.

.34. Theorem. The order of any function of an infi-

nitesimal is equal to the product of the order of the

infinitesimal multiplied by the order which the function

would have if the infinitesimal were assumed as the base.

Proof. Let I be the infinitesimal of the order a, J a. func-

tion of 1, which would be of the order b, if I were the base,

and let i be the base ; we are to prove that J is of the order

ab.

Since -J is of the order b with reference to J as a base, it is,

by art. 24, infinitely greater than I c when c is greater than b,

and infinitely less than I c when c is less than b\ but I c is, by

art. 33, of the order ac, or of the same order with i
ac

;
and,

therefore, J is infinitely less than i
ac when a c is less than a b,
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Ratios of orders.

and infinitely greater than i
ac when a c is greater than ab; or

J is, by art. 24, of the order a b.

35. Corollary. The order of any function of an in-

finitesimal of the first order is of the same order with

the same function of the base.

36. Corollary. The ratios between the orders of

several infinitesimals are not changed by changing the

base; and their orders with reference to the new base

are obtained by dividing their original orders by the

order of the new base referred to the original one.

This rule cannot, however, be applied when the order of the

new base, referred to the original one, is zero or infinity.

37. Corollary. If I is an infinitesimal of the order a

with reference to the base -/, i must be of the order -
a

with reference to / as a base.

3S. Problem. To find the order of a \ when i is the

infinitesimal base.

Solution. Denote the order of a 1 by x; that of (a')"1

is, by

art. 33, m x ; while that of a mi is, by art. 35, x ; but we have

(a 1

)

771 =z a mi

and, therefore,

771 x = x
}

which gives

2 = 0;

that is, the order of a' is zero.
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Infinitesimals of order zero not all finite.

39. Problem. To find the order of log. i, when i is

the base.

Solution. Denote the order of log. i by x ; that of a log. i is,

by art. 31, also x; while that of log. i a is, by art. 34, ax; but

we have

a log. * =: log. i a,

and, therefore, ax = x,

which gives x = ;

that is, the order of log. i is zero.

40. Corollary The order of :
-. is also zero.

log. i

41. If i were zero, we know that a 1
, log. t, and

log. i

would be respectively 1, — oo and ; and their values must

differ infinitely little from these values, when i is infinitely

small ; that is, a 1
is finite, log. i is infinite, and -

: is inn-
log.

«

nitely small. But each of these infinitesimals has been shown

to be of the order zero, so that there are infinitesimals of the

order zero, which are finite, infinite, and infinitely small.

42. Problem. To find the nth power of 1 -j- i, when
i is infinitely small and n infinitely great, so that

n i z= a. (405)

Solution. The binomial theorem gives

(l+0^1+» i
-+^1^--+ "

(
"- 1

2
)

.7
2)

'3+&c-(406)

But » is infinite, and, therefore,

n— 1 = n, n — 2 = w, &c. (407)
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Neperian logarithms.

which substituted in (406) give, by (405),

9j2 j2 »> 3 » 3

= l+a + rk + UM + &c
-

(408)

43. Corollary. When

a— 1

(408) becomes

i l l
(l + *y = l+ l+ T7

- +—- + &c. (409)

If we denote the value of the second member of (409) by

e, we easily find

c = 2,71828+ (410)

and (409) is

l

(l+.-)~=e (411)

44. Corollary. Since

a

i

we have

4- / V a*
(1+ ' =((H-»r) =f=H-«+ i3+&c. (412)

45. The number e is the base of Neper's system of

logarithms, and the logarithms taken in this system

are called the Neperian logarithms. The Neperian

logarithms will be generally used in the course of this

work, and will be denoted by log. as usual.
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Exponential infinitesimal functions.

46. Corollary. The log. of (411) is

4- log. (l + i) = log.e = l (413)

log. (I + •) = » (414)

47. Corollary. If in (412) we put for a the value

a = m i (415)

and transpose 1 to the first member, (412) becomes

e mi I __ m {. (416)

all the terms of the second member except the first being

omitted, because they are infinitely smaller.

48. Corollary. If b is taken so that

b — e m or m = log. 6, (417)

(416) becomes

frj — I = i log. b. (418)

49. Corollary. If in (416)

m = 1, (419)

(416) is

e { — 1 = it (420)
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Differences are linear functions.

CHAPTER III.

DIFFERENTIALS.

50. The difference of a function is the difference be-

tween its two values, which correspond to two different

values of the variable.

When the difference between the two values of the

variable is infinitely small, the difference of the func-

tion is called its differential.

The letters a., A.', J.",&,c.
t

4. ,
J.

19 &c, F ., p.
1

, &c,
placed before a function denote its differences, and correspond-

ing differences are denoted by the same letters. Thus

A.fx, a'.fix, &c.

are corresponding differences of f.(x), fi(x), &c, and these

differences correspond to the difference 4. x of the variable, so

that

*/.* = /. (*+.*. *) — /.*. (421)

Afix — fi(x+A. x) — fix. &c.

Differentials are denoted by the letters 3
f

3'
f
&c, d, d'

f
&c,.

D, D', &c.

51. Theorem. Differences and differentials are linear

functions.

Proof. For it is obvious that the increment of the sum Of

several functions arising from an increase of the variable is



180 DIFFERENTIAL CALCULUS. [b. II. CH. I1L

Differences are free relatively to linear functions.

equal to the sum of the increments of the variable ; or, as it

may be expressed algebraically, that

j.if.^f^^Uf.+ J.f^^ifJ+j.f.'K-if^fJ)

= *tf* db J.fi (422)

52. Theorem. Differences and differentials are free

relatively to any other linear function.

Proof. Let f. be a linear function, and (389) gives

f.(x+J.x) = f. x +f.J.z, (423)

which, substituted in (421), gives

J.f.z = f.J.x, (424)

and this is the theorem to be proved.

53. Corollary. In equation (399) we may put

fv = *•

and it becomes

(/. + J.)?. =/• + nfn-i j. + &c. (425)

54. Corollary. If the function f. of (425) is unity, (425)

becomes

{l.+ j.Y = l.+ w^+ U{n~ A)
J. 2 + &c. (426)

55. In finding differences and differentials, the dif-

ferences and differentials of the independent variables

are also independent and may vary or not, as may be
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most convenient. It is usually most simple to suppose

the differences and differentials of the independent vari-

ables not to vary, and, adopting this hypothesis, we
must regard the second differences and differentials of

the independent variables as constant.

56. Corollary. By the principle of art. 55, (426) becomes

when applied to the independent variable x

(1.+ J.) n x=(l.+nj.)x = x + nJ.x (427)

for we have

^2 = 0, j. 3 x = 0, &c. (428)

57. Corollary. Taking the function f. of each member of

(427), we have

f.(l. + j.y
i x=f.(\. + nj.)x. (429)

58. Corollary. Equation (423) gives, by transposition and
omitting x,

f. + J.f. = f.(l.+ J.) (430)

or (1.+^)/- =/..(!• +^) (431)

so that the functions/, and {l. + J.) are relatively free, and
we have, by (429),

(
1

- + ^r/^=/.(l.+ ^)^=/.(l.+ n^.) a;

= f.(x-\-?iJ.x) (432)

59. Corollary. Since the linear function j. may be subject-
ed to all the forms of algebraic calculation, it may be sub-
stituted for a in (412), and gives

16
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Differential coefficient.

eJ.= (l.+ j. + ^.l + &,c.y, (433)

and in like manner

e"J.= I 1.+ n ^•+T-^- + &c. \

.

(434)

60. The quotient of the differential of a function

divided by the differential of the variable is called the

differential coefficient of the function ; the differential

coefficient of the differential coefficient is the second

differential coefficient , and so on.

Differential coefficients are denoted by d c . ; thus

d,f.x = *g (435)

d?.f.x=:dc .dc .f.x; (436)

or, since d % is independent of x,

e/.*=^ = ^- (437)

61. Theorem. The differential coefficients of con-

tinuous functions are finite functions of the variable,

independent of the differential of the variable.

Proof. I. Let BC (fig. 47.) be the curve which denotes

the function /. x, so that if A is the origin, we have, for

AP = x, PM=f.x,
and if we take

PP> — d.x — MR, PP" —d'.x— MR',
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we have

d.f.% — PM' — PM= MR,

d'.f. x = P"M" — PM— M'R',

MR _ _ M >R<

MR '
c J MR'

But since MM'M" is an infinitely small portion of the curve,

it may be regarded as a straight line, and we have

MR __ 31"R '

~MR ~~ MR*
or dc .f.x = d'c .f.x;

that is, the value of the differential coefficient does not change

with that of the differential.

II. The differential coefficient is, in general, a finite func-

tion, for the ratio M'R : MR, which represents this function,

is the tangent of the angle M'MR, by which the curve is

inclined to the axis AX.

62. Corollary, We have, by (435) and (437),

d.f.xz=dc .f.x.dx,d2 .f.x=d?.f.x.dx2
, (438)

so that if dx is an infinitesimal of the first order, df. x is, by

art. 30, of the same order, d2 f. x is of the second order, and

so on.

Differentials may then be regarded as infinitesimals

of the same order with their exponents.

63. Corollary. If we put

nt n —
dx

ndx — h, so that n = —-, (439)
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Taylor's and Mac Laurin's theorems.

and put d. for J. in (432), we have

(].+ <*.)»/.* = /•(*+ A); (440)

or developing, as in art. 42, and putting

d, _ d*.

Tx

h 2 d2

*-=j&*- = 3p (44I
>

(l.+ ftd- + -1^+ &c.)/.z =f.(x+h). (442)

But, by (434),

i.+A^.+4-4-+ &c
- = e *' <,c

-
(
443

)
1 • ii

whence

e**-/. x — f. (z + h). (444)

64. Corollary. When, in (442) and (444), we put

x =
they become

(l.+^c.+^f- + &c.)/.0 = /.A (445)

e™cf.0=zf.h (446)

and if we now put x for h, we have

(
X + Ĉ + ^f + &c.)/0=/.x (447)

e* d
<-f.0 = f.x. (448)

Equation (442) is called Taylor's theorem, of which

(444) is a neat form of writing, and (447) is called

Mac Lanrirts theorem. The great use of these the-

orems will be seen in the sequel.
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65. Corollary. If we put, in (442) and (444), ,

h ±= j. x,

they become, by (431),

(l+ j. x dc.+&c.)f.z=f(l.+ j.)x=(l.+J.)f.z (449)

eJ.xd c,f. x = (1. + J.)f. x. (450)

66. Theorem. When the differential coefficient of a

continuous function is finite and positive, the function

increases with the increase of the variable ; but if the

differential coefficient is negative, the function decreases

with the increase of the variable.

Proof. For the differential coefficient is the ratio between

the differential of the function and that of the variable, and is

therefore positive when both these differentials are positive,

and negative when one is positive and the other negative.

67. 'Corollary. If the variable increases from any of

its values, for which the function vanishes, the function

must be positive if the differential coefficient is positive,

and negative if the differential coefficient is negative

:

that is, the function has the same sign with the differen-

tial coefficient. The reverse is the case if the variable

decreases.

68. Theorem. The greatest value of the differential

coefficient of a continuous function, which vanishes with

the variable, and extends to a given limit, is larger

than the quotient of the greatest value of the function,

divided by the corresponding value of the variable; and

16*
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Greatest and least values of differential coefficients.

the smallest value of the differential coefficient is smaller

than the smallest value of this quotient.

Proof. Let f. denote the given function which vanishes

with the variable, let %' be the limit of the variable to which

the function is extended, and let A and B be respectively the

greatest and the least of the values of the differential coeffi-

cient, so that

A— d
cf. x and dcf. x — B

are positive. But these two quantities are the differential co-

efficients of the functions

A x — f. x and f.x — B x,

both of which vanish when x is zero, and are, therefore, by

art. 67, of the same sign with their differential coefficients

when x is increasing and positive, and of the opposite sign

when x is decreasing and negative. Hence these two func-

tions are of the same sign with x, and their quotients, divided

by x, must be positive, thatjs,

X X

are positive. It follows, then, that A is greater than the quo-

tient of/, x divided by x, and that B is less than this quotient.

The truth of this proposition may be exhibited geometri-

cally. Thus, if AMB (fig. 48.) is the curve which represents

f. x, so that, for

AP =z x, we have MP z=f. x
;

if the curve at M is produced in the straight line MT,
we have, by art. 61,

f/
c
./.x = tang. MTX,
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and. by joining AM,

ting. MAX=^= f±. (451)

Now, M
1
AX being the greatest value which the angle

MAX has in this curve, it is evident that in proceeding from

Jfj to .1 the curve must be incliued to the axis AX by an

angle greater than MX
AX\ so that at 31. for instance, the

value of tang. 3ITX. or of d.f. x. is greater than tang. 31
1
AX,

the greatest value of — : and. therefore. ^4. the greatest
x

'

/•

value of d. f. x. must be greater than any value of "——

.

x

Again. MZAX being the least value of MAX
i
we see that

in proceeding from 3I2 to A the curve must be inclined to the

axis .4 J17 by an angle less than 3I AX, so that at 31 , for in-

stance, we have

tang. M T X < tang. 3I
2AX

:

whence it follows as above, that B is less than any value of

-—

.

i

69. Theorem. If a function / and its differential

coefficient are continuous, and if the function vanishes

when the variable is zero, there is. for every value of

the variable x, a value of 6 less than unity, which satis-

fies the equation

f.x = xd
:f(~x). (452)

Proof. If A and B are respectively the greatest and least

values of d.f. x, contained between the limits

x = 0, and x =z x,
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it follows from the fact, that d
c f. x is continuous, that it must

assume every possible value between A and B
}
while x varies

f'. x
from to x. But the value of —— is included between .4 and

x

By and, therefore, there is a value of %' less than x such that

4/.*' = 4-*;

or f.x — x d
c f. x'. (453)

But since %' is less than x
}
if we put

x>

6 = — or x' = 6 x,
x

we have fl less than unity, and (453) becomes (452).

70. Corollary. If in (452) divided by x, we suppose x to

be such a function fx
of a new variable Zj as constantly to

increase with the increase of x
x

and to vanish with x lt so

that

and take & lf so that

fl-»=/
4r(*.i.*i)j

then a j is evidently less than unity, and if we suppose

(452) becomes, by dividing by x,

or

F.x
1 _ dF. («,«,) _ <*. J- («,*.)

.
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or, omitting the numbers below the letters, which are no longer

needed, and put x[ == x

F. x d
c
F. (6 x) d

c F. x 1

f.x ~ de f.(6x) d
c f.x<

(454)

71. Corollary. If the n first successive differential co-

efficients of the functions F. and f. were continuous,

and all but the nth vanished, (454) would, give

F. x dc F. x' d] F. x" dn
c
F. xn

/. x ~ d
c f. x'

-
dif. x" - d: /. x;

in which x, x', x", &,c. are decreasing, so that if we put

(455)

xn

n
X

we have

F.x d:F.(6„ *)

f>*
~ </-.(«» «>•

in which is less than unity.

(456)
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Complete differential sum of partial ones.

CHAPTER IV.

COMPOUND AND ALGEBRAIC FUNCTIONS.

72. Theorem. The differential of a compound func-

tion of several simple functions, is equal to the sum of

its partial differentials arising from allowing each

simple function to vary by itself, independently of the

other simple functions.

Proof. Let f.,fJ be simple functions, of which </>. is the

compound function. We will denote by df df , the partial

differentials, supposing/.,/' respectively to vary by themselves.

We are to prove that

df . (/.,/.') = df. f. (/.,/.')+ df .. f. (/.,/.') (457)

Now we have, by definition,

df . f. (/,/.') = f. (/.+ <*/.,/.') - ,. (/.,/.'), (458)

or, by transposition,

f. (/.,//) = f, (/.

+

df.,/.')- d,. 9 . (/.,/.')

The differential of this last equation, supposing f.' to vary, is

4/ • * (/•>/•') = <*/.• v (/•+ df.,fJ)-d?,f.< * (/•./•')• (459)

But, by definition,

d/,f.{f.+df.,f.')=f.(f.+df.,f.'+df.') - <p.(f.+df.,f.') (460)
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which, substituted in (459), gives

dt, 9 . (/.,//) = *. (/.

+

df.jj+ dfi)

- 1- (/• + df.J.')- a.*/.,/.' v. (/.,/.'). (46T

)

The sum of (458) and (461) is

df. T (/.,/•') H-4.-; f- (/-/•')= f-(f-+df.,f.'+df.')

— 9. (/,/•')- df.,,. f . (/.,/.'). (462)

But we have

d v . (/.,/.') - r (f. + df.,f.<+df')-<e. (/.,/.<) (463)

which, substituted in (462), gives (457) by omitting the last

term, because it is a second differential, and therefore an infi-

nitesimal of the second order.

73. Corollary. Equation (457) is written by omitting the

function,

d. = dj, + dr . (464)

74. Problem. To differentiate a f. x.

Solution. We have, by definition,

d.{af. x) z= af. (x -j- dx) — af.x

= a[f.(z+dz)—f.x] = ad.f.z. (465)

75. Corollary. We have then

d.(ax) — adz. (466)

76. Corollary. We have also

df .(f.x.fJx) =f.'zdf.z

d/,.(f.x.f<x)=f.xdf:z
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and, by (464),

d.(f.z.f>z)=:f>zdf.z+f.zdf>z. (467)

In the same way, if u and v are functions of x,

d.(uv) = udv -\- v du. (468)

77. Corollary. Equation (467), divided by f. x.f.'z, is

f.z.f.'z ~ f.z
T

f.'x '
{ >

78. Corollary. From (469), it follows that

d.jf.z.f'zJJ'z^ cLfz_ d^z
f.x.fJx.f»x... f.z ^ /.'* T V

>

79. Corollary. If in (470) we have the rc functions

f.x=f.'z—f"z — &c. (471)

(470) becomes

*W£»JM£f
(472)

which, freed from fractions, is

d(f.x)» = nXf.x)*-idf.x. (473)

Hence, fo differentiate any power of a function, multi-

ply by the exponent and by the differential of the func-

tion, and diminish the exponent by unity.

80. Scholium. The proof of (472) and (473), which is

given in art. 79, is limited to positive integral exponents, but

may be easily extended.
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I. Proof of (472) and (473) for fractional exponents. Let

n be a fraction

m
n = —

m'

and let cp.x = (fx)n

so that (<p.x)
m ' = (/. x)m .

Equation (472) gives

m! d ((p. x) m d (f x)

(p. x " /.*

or

<P.x ' (fx)n

m d{f x) n d(fx)
" «*'" f *> f*

which includes (472), and consequently (473).

II. Proof of (472) and (473) for negative exponents. Let

n be negative

n = — m

1
and let

(p
. z =z (f x)

(f.*r

so that (p. x (fx)m = 1.

The differential of which gives, by (470) and (472),

dcp.x d(fx)m dcp.x mdf.x
tp.x* (f x)m v. x f. x

whence

d(fx)n
_ m dfx_ n df x

Jfxf- ~fx~-~fx~
which is the same as (472), and therefore includes (473).

17
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81. Corollary. Equation (483) gives

d.xm =mxm - l dx (474)

and d
c . %m = mxm - 1

(475)

d 2
c .x

m — mdc . xm-1=m(m— ])zm-2 (476)

d\. xm —m(m— l)(m— 2) x™~* , &c. (477)

If now we substitute xm for /. x in (442), we have

(x+ hr= x™ + hdc.x>»+^-d*.x™ + &c.

— X™_L_ mx™-Vi+
m^™~^ x™-

<*W+&c,. (478)

Avhich is the binomial theorem.

82. Examples for Differentiation.

1. Differentiate axm -\-b.

Ans. The differential coefficient is m a xm~l
.

d f.x
2. Differentiate \/(f. x). Ans

3. Differentiate —-.

4. ~
(/•*)"•

5.
f. X

Differentiate Vt-.

6. Differentiate )

J '
'

Ans. —
2 \Z(j. *)"

df.x

(f.*)
2

nadj

[f^f

f.'x.df.x—f.x.df.'x

n a df. x
Ans

- ~ OG^+i

Ans.

(fjxy

(f.x)m
- 1 (mf.'x.df.x— m'f.xdf.'x)
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7. Find the successive differential coefficients of

a + b x + c x 2 + + 31 1".

Ans. The first is b -f 2 c z . . . + m Mx™- 1
;

the second is 2c , . . -f »i (»i— lJJfi"1"2
;

the ??*
th is ro(w— l)(m— 2)... 1.3/;

the (w+l) st
is 0.
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Differential of exponential.

CHAPTER Y.

LOGARITHMIC FUNCTIONS.

83. Problem. To differentiate a*.

Solution. We have, by definition,

d a* =z ax + dx — ax = ax adx — a*

— ax {adx —l). - (479)

But, by (418),

ad * — l) = log. a. dx; (480)

whence

da* — log. a. ax dx. (481)

84. Corollary. Hence

dc a
x = log. a. ax

d*. ax = log. a. dc a
x — (log. a) 2 ax

dn
c.a

x — (\og.ayax (482)

and by making x =
a° = 1

dc . a — log. a

d%. «o — (log. «) 2

dj. a° — (log. a)". (483)
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Differential of logarithm.

If now we put in (447)

£ x = a?

we have

a' = 1 + log. a. x + (1°g
;

*• * )2 + &c. (484)
1 .

—

85. Corollary. If we have a — e, we have

log. e == "1,

e* = dc
. e

x — d] . e
x
z= dn

c . e
z

(485)

1 = de
. e° =s «£ e°= £. e° (486)

e* = 1 + x +^ + &c. (487)

and (487) is the same with (412).

86. Problem. To differentiate log. x.

Solution. "We have, bv definition,

d. log. x — log. (x -\- d x)— log. x

= 'og.^- = log.(l+^). (488)

But, by (414),

and, therefore,

d. log. x =—

.

(489)

17*



198 DIFFERENTIAL CALCULUS. [b. II. CH. V.

Development of logarithm.

87. Corollary. Hence

d
c .\og. x — - (490)

dl log.x = d
c
.-= — -

a* log. £ = —

the upper sign being used when n is odd, and the lower when

n is even.

If now in (442) we make

/• = log-

we have,

log.(* + A) = log.*+i-— + 3^-&c. (492)

88. Corollary. If in (492) we put

X sac I,

we have

log. (1 +A)= i — J/i
2 + i^ 3 — 'f*

4 4" &c - (493 )

89. Examples.

1. Differentiate log. [x +\/(l +x 2
)].

dx
Ans

2. Differentiate (log. x)
n

. Ans

V(l + *2 )'

n (log. x)n
— 1 dx
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Differential of 2d and 3d logarithms.

dx
3. Differentiate loo;. 2 x. Ans.

4. Differentiate locr. 3 x. Ans.

x log. x'

dx
xlog.x. log. 2x

5. Differentiate a^ x
.

Solution. Let y = b*

and we have a^ x = a y

whence d. ab x — d. a y= log. a.

a

y'. d

y

But dy = d.bx= log. 6. 6*. ds

so that d.ab*= log. a. log. 6. <$x . bx d x.

6. Differentiate x y
.

Solution. Equation (464) gives

d.x y — dx.x
y -\-d

y
.x y

But by (473) and (481)

dx.x y = yxv — 1 dx

d
y
.x y =z log. x. x y dy

so that

d.x y = y xy—*1 dx -\- log. x. x y dy.
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Differential of sine and cosine.

CHAPTER VI.

CIRCULAR FUNCTIONS.

90. Problem. To differentiate sin. x.

Solution. We have, by definition,

d. sin. x z=z sin. (x -\- dx) — sin. x.

But, by trigonometry,

sin. (a;+ dx) = sin. x cos. d x -f- cos. x sin. d x,

cos. d x =. 1 , sin. d x = d x,

so that d. sin a: = cos. Z. ds. (494)

91. Problem. To differentiate cos. x.

Solution. Substitute in (494), %n— X) and it becomes

d. sin.
( J 7T— &) = cos.

(
J n— x) . d

(
J tt— «). (495)

But we have

sin.
(
J 7T— x) = cos. x, cos.

(
J ^— x) = sin. x

d (i™— x) =— e? z,

which, substituted in (495), give

c?. cos. x = — sin. x dx. (496)
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Development of sine and cosine.

92. Corollary. Equations (494) and (496) give

dc . sin. x = cos. x

d*. sin. x = dc . cos. af— — sin. x

d3
c

. sin, x — dz
c

. cos. x — — dc sin. x = — cos. x

c/
4
c

. sin. x =z d3

c . cos. z = — dc cos. a; == sin. a;

dn
c . sin. 2; = dj

-1
. cos. x= dn^. sin. a, (497)

so that the four values of all the successive differential co-

efficients of sin. x and cos. x are alternately cos. x, — sin. x,

— cos. x, and sin. x.

Hence, making x ~ 0,

we have, when n is even,

dn
c . sin. = d n~ l

cos. — 0, (498)

but when n is odd

d n
c

. sin.O = d n
c

~ l cos. = ± 1

;

(499)

the upper sign being used when n— 1 is divisible by 4, and the

lower sign when n -\- 1 is divisible by 4.

These values, substituted in (447), give

siD - x = x~m + rdfcus + 1^X6^+ &c
- (
50°)

co"=1-i¥ + iin-uu5.6+ fa''5M »

93. Problem. To differentiate tang. x.

Solution. We have, by trigonometry and example 6, of

art. 81,

sin. x cos.xdc s\n.x— sin. xdc cos.xdc . tang. x=z dc

cos. 2 x
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Development of tangent.

whence, by (494), (496), and trigonometry,

_. cos. 2 x -4- sin. 2 x 1 >»«1*«
dc\ tang, x = X = —

.

(502
COS. 2 X COS. 2 X '

94. Corollary. Equations (502) and (496) give

2d
c cos. x 2 sin. x 2 tang, x

d2

c . tang, x
3COS. * X COS. ° 2 COS.* X

or cPc . tang, x = 2 tang. x. </
c
tang. £

dj tang, x— 2 tang, a; d\ tang, a; -f- 2 (d
c tang, x) 2

c/* tang, z == 2 tang, a; ^ tang, x -}- 6 tfc tang, x d* tang, x

^ tang, x z= 2 tang, x rf* tang, x -(- 8 c?c tang, x ^ tang, x

+ 6(rf
c

2 tang. x) 2

rf"tang. xz= (r/
c

. tang, x
-f-

dc . tang. x)™- 1
. (503)

in which the exponents are to be annexed to the d
c
. ; when

the exponent is zero, as in the first and last terms, the d
c . is

omitted, and tang, x retained ; and as the terms equally dis-

tant from the two extremities of the developed series are alike,

they may be added together.

By making x = 0,

these equations give

dc
tang, x = 1

d\ tang, x z=

d\ tang, x = 2

d]. tang, x —

d5

c
tang, x — 16.
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Differential of negative sine and tangent.

Hence, by (447),

2 16

= ^+ i^ 3 +T2^ 5 + &c. (504)

95. To differentiate arc sin. 2: =1 sin.C-1^.

Solution. Let y = sin.[— ^x

or sin. y = x

so that by differentiation

cos. y.dy = d x = d y \/(l— sin. 2 y) =dy\/(l— x2
)

and

4. sinJ-n *= J, y=g =^__= (1-%-J. (505)

96. Corollary. By the same process we should find

de . cos.C- 1
] x = dc arc cos. z — — (1—x*)-h. (506)

97. Problem. To differentiate tang.C—1^= arc tang. x.

Solution. Let y = tang.C—^ x

or tang, y =1 x,

so that, by differentiation,

J^= dx= dysec*y=dy(l+tzngZy)=:dy(l+z*)

and

rfc
tang.[-i]*= rf

e
y=f^. = (i+ x2)-i. (507)
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Development of negative sine.

98. Scholium. By applying Taylor's theorem, the

values of sinJ—*] x, cos. I—*] x, and tangJ—^ x, might

easily be found expressed in series
;
but they may more

easily be found by the following process.

99. Problem. To develop sin.t
-1^ in a series arranged

according to powers of x.

Solution. Suppose the series to be

sin.t-1 ! x— C + C
%
x+ C2 x* + C3

x*+ C4 z*+ &c. (508)

in which the number below the coefficient denotes the power

of x, which it multiplies. We find, then, by differentiation,

(505), and the binomial theorem,

(1— x2)-i= C
1
+2C2

x+3C
3
x2 + 4C4 i3+&c .

_ . 1.3 . ,
1.3.5

X 6 -\-&LC.-*-r»* i a.r ' 2.4.

whence

c, = i

<V-;*-i™*

C5 — T -274- ¥?J

and, C„ =0
when n is even, and if in (508) we put

x=z

it becomes

c = o.

Hence, by substitution,

sinj^ x = x + ix3+A»* + &c. (509)
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Development of negative eosine and tangent.

100. Corollary. In the same way, if we put

cos.t-1
] x = C + C

x
x + C2

%z + &c. (510)

we find all the coefficients except C
Q

to be the negative of

those for sin.t-

J

] x, and if in (510) we put

x —
we find

C =. arc. cos. = % nt

whence

cos.t-^x^r \™— x— £x 3— &X* — &C (511)

101. Corollary. If in (511) we put

x— 1

we have

COS.C-1
! 1 — = 1 7v— 1— £—&— &c. (512)

and if (512) is subtracted from (511), term from term, it gives

cos.[-1Jx = (l—x)+^.(l—x3)-f ¥37 (i_X5)^_ &c . (513)

102. Problem. To develop tang.t—^a? in series, ac-

cording to powers of x.

Solution. Suppose the series to be

tangJ-1
] x = C + C

1
z + C2 x2+ &c. (514)

we find, by differentiation, (507), and the binomial theorem,

(1+ z2)-i= C
1
+2C2 z+ 3C

3
x2+ 4C'4 x3+&c.

— 1 _ X2 _|_ X4 __ x e _j_ &,c .

whence C
2
= 1

<Y=.-*
c. = i

and when w is odd Cn =. i -,

18
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Differentials of circular functions.

the upper sign being used when n -\- 1 is divisible by 4, and

the lower sign when n— 1 is divisible by 4 ; but when n is

even or zero,

c„ = o.

Hence, by substitution,

tang.C-1^ = x— £z 3 _|_.i x s __ i X 7 _|_ &,c . (515)

103. Examples.

1. Differentiate sec. a;. Ans. tang, x . sec. x d x.

2. Differentiate sin." 2;. Ans. nsm.n—l x cos.xdx.

3. Differentiate log. cos. z. Ans. — tang. xdx.

, t^'/y. • 1 / /I +sin.z\
4. Differentiate log. \/ I : I. Ans. sec. xdx6 ^ \1 —sin. xf

~ T^m 1
r n / 6+ flCOS. X \

5. Differentiate -~^——r cos.t-1
! (
—\— 1.

V(a2— b 2
) \ a -\- cos. x J

a dx
Ans.

a
-J-

b cos. x

dx
6. Differentiate cot. x. Ans.

sin. 2 2;
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Value of fraction, when both terms vanish.

CHAPTER VII.

INDETERMINATE FORMS.

104. Problem. To find the value of a fraction when
its numerator and denominator both vanish for a given

value of the variable, of which they are both continu-

ous functions.

Solution. Let the fraction be

§= <516 >

and let x be the value of x, for which the terms vanish ; let

h =z x — xQi or x — x -f- h, (517)

the given fraction becomes then

J
- ('.+»>

(518)

which is a fraction, both whose terms vanish for

h = ; (519)

so that in (456), h being the variable instead of x
f
we have,

if all the differential coefficients of the terms vanish, up to

the ftth
?
when

h = 0,

f.(x + h)-d"e.f.{* +6n hy
{
™ }
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Fraction of which both terms vanish.

which when h =

becomes :&&- = ^lElll (521
*

so that the value of the given fraction is obtained by

differentiating its numerator and denominator, until a

differential coefficient is obtained, which does not van-

ish for the given value of the variable.

105. Examples.

1. Find the value of —
:

. when x = 0.
sin. x

Solution. We have

co_ e-o dc.e°—dc.e-° e°+c-° 1 + 1 = 2.
sin. dc . sin, cos. 1

sin (x^\
2. Find the value of———-, when x = 0. Arts. 0.

sin. x
3. Find the value of—-— , when x = 0. Ans. oo.

4. Find the value of ——-, when x = 1. Ans. 1.
x — 1

5. Find the value of -, when x = a. Ans. na71—1
.

1 cos X
6. Find the value of —-— , when x= 0. Ans. J.

x—- sin x
7 Find the value of — , when x=z 0. Ans. £.
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Fraction of which both terms are infinite.

e
x

e— x 2 X
8. Find the value of : , when x=z0.

x— sin. x

Ans. 2.

9. Find the value of — , when x = 0.

Ans. h

10. Find the value of
sin.

sin.9
'
when <P = 0. Ans. m.

11. Find the value of
sin.

sin

m (p

>
when

g> = 7Z, and m is an

intesrer.

Ans. — m cos. m n, so that when m is even, the answer is

— m ; and when m is odd, the answer is m.

106. Problem. To find the value of a fraction, when
both its terms become infinite for a given value of the

variable.

Solution. Let the numerator of the fraction be Y and the

denominator y, the fraction is

Y _
y
~ y- 1

Y-\ (522)

But when y and Y are infinite, their reciprocals, y~ l and

F—1 , vanish, and we have by the preceding art.

Y _ d,y~i -y-*dc y _ Y*dc y
y " dc .

F-i —F-» di Y ~"
y* d>c Y

Y2

and, dividing by —

-

y-i:y or J = dTy>
(523)

18*



210 DIFFERENTIAL CALCULUS. [B. II. CH. VII.

so that the value of the fraction may be found by dif-

ferentiating both its terms ; and if both the terms of

the fraction thus obtained are infinite or zero, the dif-

ferentiation may be continued, until a fraction is obtain-

ed, of which both terms are not infinite or zero ; and

equation (521) applies to the present case as well as to

the preceding one.

107. Examples.

1. Find the value of
°*

, when i = 0.
cot. x

Solution. We have

log. dc . log. sin. 2

cot. "~ gL cot. 0-
— 2 sin. cos. = 0.

„ _, , ,
_ _ cot. m cp ]

2. f ina the value ol , when <p = 0. Ans. —
cot. ^ m

108. Problem. To find the value of a product of

two factors, when one of the factors become infinite

and the other factor becomes zero for a given value of

the variable.

Solution. Let y and Y be the two factors, and we have for

the given product

V Y= -^T (524)

so that it is equal to a fraction, of which both the terms
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Infinite or zero powers.

are infinite, or both are zero, and the value of this frac-

tion may be found by the preceding articles.

109. Examples.

1. Find the value of xa e~ x
, when x —z oo. Ans. 0.

2. Find the value of x (log. x)n, when x z= 0. Ans. 0.

3. Find the value of za log. x, when x = 0. ^ins. 0.

4. Find the value of x cotan. a, when x — 0. -4ws. 1.

110. Problem. To find the value of a power, when
the exponent and the root are both such functions of a

variable, that they assume, for a given value of the

variable, one of the forms 0°, oo°, or l
30

.

Solution. Let the power be

z 3= F* (525)

and we have, by logarithms,

log. z = y log. F, (526)

so that in either of the given cases log. z is equal to a

product, of which one of the factors is zero, while the

other is infinite
; its value may therefore be found by

the preceding articles ; and when its value is found, we
have

z = e l°s^ (527)

or Yy = ey l°s-r (528)
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Infinite or zero powers.

111. Examples.

1. Find the value of xx, when x =z 0.

Solution. Since log. =
we have 0° = e° = 1.

% Find the value of (e
x— 1)*, when % = 0. Ans. 1.

3. Find the value of cot.^ q>, when gj = 0. Ans. 1.

4. Find the value of cos. <jD
cot-g>, when cp = 0. -4ws. 1.
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Maxima and minima of function of one variable.

CHAPTER VIII.

MAXIMA AND MINIMA.

112. A value of a function, which is greater than

those immediately preceding and following it, is called

a maximum of the function ; while a value, which is

less than those adjacent to it, is called a minimum.

113. Problem. Find the maxima and minima of a

continuous function of one variable.

Solution. Let f. be the given function, of which all the

differential coefficients, inferior to the nth, vanish, for a given

value x of the variable. Then

/•(*«+*)-/.*. (529)

is a function of h, which vanishes with h ; and its differential

coefficients, inferior to the rath, also vanish with h, for they

are, when h is zero,

«• /• (*. + *) = « /• *o = 0. (530)

Moreover hn is a function of h, all the differential coeffi-

cients of which, inferior to the rath, vanish with h, and the

nth differential coefficient is

dn
c .h

n — 1.2.3 n. (531)

If now, in (456), these two functions are substituted, and if

h is regarded as the variable, (456) becomes

I
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Rule for maxima and minima.

¥ - 1.2.3....»
{5i2

>

But if h is taken infinitely small, x
Q

-\- &n h differs infinitely

little from x , and the &n h may be neglected, so that (532),

multiplied by hn , becomes, by transposition,

/• (». + *) =/• *o + u 8>
&"

.

.

- *.•/•V (533)

By changing /* into — A, (533) becomes

/• (*. -*) =/ *o +
1, a"^.

r
.

,

<•/• '. (
534

)

If, then, w is odd, of the values of the given function,

which are adjacent to f.xQi one is greater, while the other is

less than/. x , so that this value does not correspond to a

maximum or minimum.

But if n is even, the values which are adjacent to f. x are

both greater than fx , when the nih differential coefficient is

positive; and they are both less than f. x
Q , when this coeffi-

cient is negative.

Hence, to obtain the maxima and minima of a given

function, find the values of the variable which reduce the

first differential coefficient to zero. Each of these values

of the variable must be substituted in the succeeding

differential coefficients, until one is arrived at, which

does not vanish.

Jf the first differential coefficient which does not van-

ish is even and positive, the corresponding value of the

function is a minimum; but if the coefficient is even

and negative, the value of the function is a maximum.
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Case when differential coefficient is infinite.

114. Scholium. When the function, varying with the in-

crease of its variable, passes through a maximum or minimum,

its difference must change its sign. If this difference is con-

tinuous, it can only change its sign by passing through zero
;

but if it is discontinuous, it may also change its sign by pass-

ing through infinity, and the first differential coefficient which

does not vanish must in this case be infinite.

The case, therefore, in lohich the first differential co-

efficient, which does not vanish, is infinite, deserves

particular examination; and all other cases of discon-

tinuity are to be considered by themselves, but they are

rarely of much interest.

115. Examples.

1. Find the maxima and minima of the function x3
-f- a x -f- b.

Solution. The differential coefficients are

dc .(x* + ax-\-b) = 3z2 _|_ a

d%(z* ^j- ax + b) = 6x

d\. (x*3 + a x + b) — 6.

The first coefficient is zero when

so that there is neither maximum nor minimum, unless a is

zero or negative. For this value of x, the second coefficient

becomes

db 6 a/— % a,

which, when a is negative, is positive for the positive value of
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Examples of maxima and minima.

x, and negative for the negative value of x. The correspond-

ing values of the function are

But when a is zero, the second differential coefficient also

vanishes, and the third does not, so that there is neither maxi-

mum nor minimum.

2. Find the maxima and minima of the function

a x2 -\- b x -\- c.

4 a c b 2

Ans. The value is a maximum when a is
4 a

negative, and a minimum when a is positive ; the correspond-

ing value of x is

3. Find a maximum or minimum of the function

e
x

-\- e~ x -\- 2 cos. x.

Ans. The value 4 is a minimum, which corresponds to

the value

x — 0.

4. Find a maximum or minimum of the function

Ans. The value 2 is a minimum, which corresponds to the

value

x — 0.

5. Divide a number into two such parts that their product

may be a maximum or minimum.

Anst The product is a maximum, when the two parts are

equal.



$ 115.] MAXIMA AND MINIMA. 217

Examples of maxima and minima.

6. Divide a number into two such parts that the product of

the mth power of the one by the 71
th power of the other may

be a maximum or a minimum, m and n being positive.

Ans. The product is a maximum, when the parts are in

the same ratio as the exponents of their powers.

7. Inscribe in the triangle ABC (fig. 8.), the greatest or

the least possible rectangle DEFG.

Solution. Using the notation of art. 41, example 2, we have

the surface DEFG = —
7

'-.

A

which is a maximum, when

% =z £ A.

8. Through a given point C (fig. 15.) draw a line BCD, so

that the surface of the triangle ABD, intercepted between

the lines AB and AD, may be a maximum or a minimum.

Solution. This surface is, by art. 42, example 7,

% x y sin. A = J (a y -f- b x) sin. A.

the first and second differential coefficients of which are

= i (y + x dcV) sin. A = J (a d
c y + b) sin. A.

{d
c y+ izd 2

y) sin. A = % a d 2

c y sin. A.

Hence

j & — yd<y= ; nx— a

= bx — ay,

y = 2b, x = 2a, %y = ^r,

and the surface is a minimum.

19
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Maxima and minima of product.

9. Find on the circle (fig. 33.) referred to the centre B, as

the origin of rectangular coordinates, the point M, for which

the product of the coordinates is a maximum or a minimum.

Ans. The product is a maximum when y —: x.

10. Find on the ellipse (fig. 35.), referred to its centre as

the origin, its axes as the axes of coordinates, the point M,
for which the product of the coordinates is a maximum or a

minimum.

Ans. The product is a maximum, when the coordinates are

in the ratio of the axes.

116. When the function, of which the maxima and minima

are to be found, is a product or quotient, the solution is often

simplified by finding the maxima and minima of its logarithm,

which evidently correspond to those of the function.

Examples.

1. Find the maxima and minima of the function x~ a e bx
,

when a is positive.

Solution. We have

log. (x~ a e bx )
— — a log. x -\- bz

dc . log. (x— a e bx ) = - + &

dl.\og.(x-«e b*)= £
so that the value

a
% = T
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Maxima and minima of product.

corresponds to a maximum. The corresponding value of the

given function is

(t)-

2. Find the maxima and minima of the function

(z— a) (x — 6)i-2.

Ans. There is a minimum, when

_ 2ab
X ~a+b'
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Orders of contact.

CHAPTER IX.

CONTACT.

117. When two curves meet or cut at a given point,

and, at any infinitesimal distance of the first order from

this point, are at a distance apart, which is an infini-

tesimal of the n -f- 1 st order, they are said to be in

contact at this point, and their contact is of the n th or-

der.

When one of the curves is of the first degree or the

straight line, it is the ordinary tangent.

When n is zero, there is no contact, but only an in-

tersection.

118. Theorem. When two curves are in contact, the

portion which is intersected between them upon a line,

drawn at an infinitesimal distance from the point of

contact, and inclined by a finite angle to the directions

of the curves, is of the same order of infinitesimals with

the distances of the curves apart.

Proof. Let M< 3IQM and M[M M
1

(fig. 49.) be the curves,

A the point of contact, MN their distance apart, and MM
X

the intercepted portion of the line PM. The line M
X
N may

be regarded as a straight line, and the angle 31N3I
1

as a

right angle ; so that, we have
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Conditions of contact.

31M, = MN X sec. NM3f
1

.

But sec. NMM
X

is finite, as long as the angle MM
X
N, by

which MNM
X

differs from a right angle, is finite ; and,

therefore, by art. 31, MM X
is of the same order with MN.

119. Problem. Find the algebraic conditions which

denote that two giveu curves have a contact of the n lii

order.

Solution. Let the equations of the two given curves MM M,
M'

1
M

QM1
(fig. 49.), referred to rectangular coordinates, be,

respectively,

y = f.x (535)

y =/,.*• (536)

Then if A is the origin and M the point of contact, we have

at this point

AP z=x 0) P M z=zy Q

or f. x =fx
. x or /. x —f±

. x
Q = 0, (537)

and if PP = h

we have MM, =f. (x
Q + h) —fv (%+ h). (538)

If, now, f. x —fx
. x is such a function of h that all its

differential coefficients inferior to the mth are zero, we have,

by (533) and (537), substituting /. —fx
. for /.

MM
i = T-o^—Z *? (/• -o ~fi- *o) (539)

1.2.3.

and if we put

x __ ff-(/-s -/,.s
) _ <%.f.x -d".fx

.x

1.2.3. ...m ~~ 1.2.3. ...m

19*

(540)
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Condition of curves crossing at point of contact.

we have

M31
1
= JC .hm

} (541)

so that if h is of the first order, MM
1

is of the mth order.

But MM
X

is to be of the (n-\- l) st order, and therefore we

must have

m = n + ], MM X
— X .h n+ 1 (542)

X - d<
n+1

f' xo- d<
n+1'fi-

x
o 543^X

° - ~ 1.2.3 (»+lj~~ }

and all the differential coefficients of f. x —fx
. x, inferior to

the (w-f- l)st
?
must be zero; that is, we must have, when m is

less than n -\- 1,

d-f.x -d:f1
.x = (544)

or d?/. x =z dmc fx
. x . (545)

120. In the same way, it may be proved that if the

equations of the two curves are expressed in the polar

coordinates of art. 45 ; so that they are

r — F. <p, r = F
x

. q> (546)

we must have, when m is less than n + 1. for the point

rQ , <p of contact,

«f- F. % z=z d? Fv To- (547)

121. Theorem. Two curves, which are in contact,

cross each other at the point of contact, when the con-

tact is of an even order ; but, if the order of the contact

is of an uneven order, they do not cross.

Proof. For, when h is negative in (541), the sign of MM
X

is the same as when h is positive if n is uneven, but is the



§ 123.] CONTACT. 223

Tangent.

reverse if n is even ; that is, if n is even, the point M' (fig. 49.)

is nearer AP than M
x\ while the point M of the same curve

with M 1

is farther from AP than M
x

of the same curve

with M
x

'
; and if n is uneven, the reverse is the case, as in

(fig. 50.)

122. Problem. Through a given point upon a given

curve, to draw a tangent to the curve.

Solution. Let x and y be the coordinates of the given

point, and (535) the equation of the given curve. If r is the

angle which the tangent makes with the axis of x, its equation,

since it passes through the given point, is by (162),

y — y — tan s- r
(
x —x

'o)- (
548

)

Hence, by differentiation,

ldc. y — tang, r — d
c

. y Q
= d

c.f. x Q (549)

and the equation of the tangent is

y — yo — dc-f- *
(
x — ^o)- (

55°)

123. The projection PT (fig. 51) of the tangent

MT upon the axis of x is called the subtangent, and

if we put

AT — x

the coordinates of T are

y = and x — xf

,

so that

pr= Io-^4- = A-=i|»-. (55i)
d

c.f.x dc.y de.f.x
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Tangent.

124. Corollary. When the equation of the curve is express-

ed in polar coordinates, as in (546), the tangent can be found

by means of (117). Thus we have

^ = Jtt— a
}
or a z=z ^ n r (552)

</>+ « = J ^— r -\-(p ~^tv— (t— (f)

r cos. (<p -j-«) z= rsin. (t— <p) z=p f (553)

and by logarithms

log. r -f- log. sin. (t— y) =z log. p. (554)

The differential of which is, by transposition,

dc
r cos. (t— </>) 1

-^- == -—
{ = ; rz=cotan. (T

—
if). (555)

r sin. ^— (/)) tang. (^— y)

But in (fig. 51.), we have

ip = MAP, t = MTP, (556)

and if we put

s — AMT =t — <p (557)

s is the angle which the curve makes with the radius vector

at the point 31, so that

d r
cotan. « == -^—-= dc

log. r = d
c log. JP. y (558)

r

and the equation of the tangent at the point r y is

r sin. (t — y) — r sin. *. (559)

125. The perpendicular MI to the tangent at the

point of contact is called the normal to the curve.
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Normal.

If v is the angle which the normal makes with the axis of

z, we have then, by (549),

? — i * + r (560)

tang, v = — cotan. t — = , (561)
tang.r dc y

' \ '

and the equation of the normal is

y — Vo =tang.*(z— i )
— — -—-(z— x-

). (562)

126. The projection PI of the normal Mi" upon the

axis of x is called the subnormal
y
so that its value,

found like that of the subtangent, is

AI— x
Q
= y Q

d
c y ==/. z ,d

cf.x Q . (563)

127. Corollary. The lengths of the tangent and normal,

found from the right triangles MTP and MPI, areOS '

T= i»/T=V^i52+PT2
)— /*- V[i+«y )

2
] (564)

iV=i»U=: %/(J7^+P/ 2)=yoN/[l+Ky ^]

= y tfc y . (565)

128. The tangent is called an asymptote, when the

point of contact is at an infinite distance from the

origin.

129. Scholium. It must not be overlooked that in finding

dc y, x has been regarded as the independent variable. But if

it were not so, and if some other variable, as u, were the inde-

pendent variable; then, denoting by dc3.. y
dcu .

}
the differential
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Tangent.

coefficients taken on the supposition that x, u are respectively

the independent variables, we have, at once,

130. If all the terms of the equation of the given curve

were transposed to its first member, and if Fwere this first

member, the equation would be

V=0, (567)

whence by differentiation, putting V for the value of Fat

the point of contact

dc . x V dx + d
c . y
V dy=0, (568)

d i/

from which the value of -— , being found and substituted in
a x

(548), gives by reduction for the equation of the tangent

^o^.^-^ + ^oFob-rt^O, (569)

so that the equation of the tangent may be found by differen-

tiating the equation of the curve and substituting x— x and

y— y
! for d x and dy respectively.

131. Examples.

1. Find the tangent, normal, &c. of the circle.

Solution. The differential of equation (58) of the circle

gives for any point x0f y01

zQ +yodc y = 0,

tang. r = -, tang. v s= -^.

Vo x
o
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Tangent and normal to circle and ellipse.

The equation of the tangent, reduced by (5S), is

y y + x
o
x = fo + A — R 2

,

and that of the normal is

2-0 y — y z = o,

so that the normal, by art. 109 of Book I., passes through the

centre, and is the radius. We have also

yl R 2— x\
the subtangent = —— =

x
o

x
o

the subnormal — — x
Q

R y
the tangent = —— , the normal —z R.

x
o

Again, from equation (56) we find

cotan. s ±= dc log. R =
« = 90°

;

that is, the radius vector drawn from the centre is perpendicu-

lar to the tangent.

2. Find the tangent, normal, &c. of the ellipse, of which

A and B are the semiaxes.

B 2 x. A 2 yn
Ans. tang. x = -—i, tang, r = g^.

The equation of the tangent is

A 2
1/o

ij + B 2 x x = A 2 B 2
;

that of the normal is

-B 2 x y + A 2
y x=(A 2-B 2 )xo!/o .

A 2
y
2 A*—x 2 A 2

The subtangent ±= ^r9-— -= &o •

Jt> Xq Xq Xq
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Tangent and normal to hyperbola.

B 2 X
The subnormal = —

.

A 2

When the focus F (fig. 34) is the origin

csin. (Po —cr sin. (p cy
cotan. * = '

z=z - z= ~.A— c cos. tPo B 2 B 2

When the focus F' is the origin

c Vo
cotan. a' =z -~-= — cotan. e

Corollary. The lines F3I, F' 31, (fig. 52.) drawn from the

foci to any point 31 of the ellipse make equal angles FMt,
F

t
31 1, with the tangent at the point 31. Hence a tangent

may be drawn to the ellipse by bisecting the angle F3IF
X
by

the line T31t, which will be the tangent required.

3. The tangent, normal, &c. of the hyperbola are found

from those of the ellipse by changing the sign of B 2
.

We hence find for PT (fig. 51.) in this case

A 2

x
o

AT — AP— PT=-—,
xo

so that for the asymptote we have

x = oo , A T = 0,

cotan. s = — oo, «:=t — <p = 0, r = y
But, in this case, we have by_cor. 1, of the hyperbola, B. I. § 98,

A
r = oo , cos. <p = cos. ^= -p=
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Tangent and normal to parabola.

and the lines EAE'xi E 1
AE' (fig. 36.) are asymptotes of

the hyperbola.

4. Find the tangent, normal, &c. of the parabola, whose

parameter is 4 p.

a 2

»

. yn
Ans. tang, r = —--, tang, v = — ^-h_.

The equation of the tangent is

y y = 2p(x + x ),

that of the normal is

*py + yo x = C2p + xo)!/o-

The subtangent == 2 £
,

the subnormal = 2p,

and when the focus is the origin

sin. tp 2 sin. Ay cos. A <p

cotan. b = — = £-| —s-^isr— cotan.A«>
1— cos. 9 2 cos. J y

*

e = — Jy =: t — 9

*= Jy;

that is, if (fig. 39.) MT is the tangent, we have

MFP = FMQ — cp — 'i FMT,

so that a tangent may be drawn to the parabola by bisecting

the angle FMQ.

5. Find the tangent, normal, &c. of the cycloid.

Solution. Taking q as the independent variable, wejhave
by (549) and (566)

20
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Tangent and normal to cycloid and spirals.

dc . y sin. & ! A
tang. T = dcx y — -—- = - = cotan. * e

6 czy dc
.x 1 — cos.0

J

But if (fig. 41.) JfZ? is joined, the angle MBX is measured

by a semicircumference diminished by half the arc MB, that

is,

MBX— 7v — I MCB — n — ^^ — v,

so that MB is the normal to the cycloid, and MT, which is

drawn perpendicular to MB, is the tangent.

The subtangent = 2 R sin. 3
J & sec. £ 5

the subnormal = .R sin. & = iJ — x

the tangent = 2 .R sin. 2 \ & sec. J

the normal =2 R cos. J 6,

6. Find the tangent of the spirals of equation (133).

Ans. For the tangent

n
cotan. £ = —

.

<Po

7. Find the tangent of the logarithmic spiral.

Ans. If the logarithms of equation (136) are taken in the

system of which the base is a, (136) converted into Neperian

logarithms is

log. r = log. a . <p

and we have, for the cotangent,

cotan. * == log. a.
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Order of contact of straight line.

8. Find the tangent and asymptote of the hyperbolic spiral.

Ans. For the tangent

1
cotan. * z=

9>o

dist. of tang, from origin

which for the asymptote become

<p = 0, * = r — y = 0, r — (f Q
— 0,

dist. of asymp. from origin =z 2 n R,

so that the asymptote is parallel to the polar axis.

132. Corollary. The straight line is completely de-

termined by the condition, that the first differential co-

efficient of its ordinate is equal to that of the curve at

the point of intersection ; and, therefore, the tangent

has usually only a contact of the first order with a

given curve ; so that, by art. 121, the tangent does not

usually cross the curve at the point of contact.

133. Corollary. A point of one curve may be placed

upon a point of another, and the two curves turned

around upon this common pivot until their tangents

coincide ; in this position, the two curves have evident-

ly a contact' of the first order. If now one of the curves

is everywhere of the same curvature, that is, if it is

a circle, the contact will remain of the same order,

whichever of its points is brought to the point of con-

tact j but if it is any other curve, a point of it can
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Element of curve.

usually be found, which, brought to the point of contact,

will elevate the order of contact to the next higher

order.

134. Corollary. By changing the dimensions of one

of the curves, the order of contact can usually be in-

creased by unity, for each of the constants which enter

into the equation of this curve, and upon which its

dimensions depend ; for each of these constants, regard-

ed as an unknown quantity, may be determined so as

to satisfy a new equation of those (545) or (547) upon

which the order of contact depends.

Thus, a circle can usually be found, which has a contact of

the second order, with a given curve at a given point ; a

parabola, a cycloid, or a spiral of the form (133), (135), or

(136), which has a contact of the third order; an ellipse or

hyperbola, which has a contact of the fourth order, &c.

135. The differential of the arc of a curve is called

its element.

Thus, if s denotes the arc, d s is the element of the curve.

Hence in (fig. 53.) if

d x = PP< = MN,

we have then, by regarding MM' as a straight line,

dy — M'N, ds = MM' = s/{dx* + rfy*,) (570)

so that if x is the independent variable

rf, S = V[l+Ky) 2
] (571)
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Element of curve.

and if s is the independent variable, using the notation of art.

129,

i = V[(4..*)» + (4..y)
a
]. (572)

136. Corollary. In the same way, if the radii vectores

AM, AM' are drawn, and the arc MR described with R as a

radius, we have

MAM'= d<p
9
M'R= AM'— AM=dr, MR=zrd 9 , (573)

and if MRM' is regarded as a right triangle

ds = y/(dr2 -\-r2 d<P2 ), (574)

so that if y is regarded as the independent variable

dcs=V[(dc r)2 + r2]. (575)

137. Corollary. The triangle M'MN gives, by (560), x

being regarded as the independent variable, when none is ex-

pressed in the formula

M'MN= r

C0S
*
r = Ts = -I-s

= dc ' 8X = ^ V (576)

sin-=K=|f = ^=-- cos-*
<
577

>

and by (564) and (565)

tug.=^ = y4.,.= ' =^=_-£- (578)dc . y .

•-." dc. sy sin.* cos." v
'

normal = ydc s = ^— = -^- = -^-. (579)
a
c
.

ff
z cos.t sin. v v

'
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Contact of surfaces.

138. Corollary. The triangle MRM 1 gives

31MR — a (580)

C0S
-'=Ts = d7s

= d" r (581)

<p being regarded as the independent variable, when none is

expressed in the formula.

139. Two surfaces which intersect at a given point

are said to be in contact, when their sections, found by

any plane passing through this point, are in contact.

140. Problem. To find the algebraic conditions that

two surfaces are in contact at a given point.

Solution. Let the surfaces be referred to rectangular co-

ordinates, and let x
, y , z be the coordinates of the point

of contact. Then the sections of the two surfaces, made by

any plane, are found by equations [321-323], and since

these sections are in contact, the values of dc y lf found on the

hypothesis that %
l

is the independent variable, must be equal

for the two surfaces at the point of contact. Hence the values

of dc x , dc y , dc z , found by differentiating the equations (321

-323] must also be equal for the two surfaces, as well as

dc y n _ dy
dc

x d x

d„ z n d z,

= <*«•, y„ (583)

.1
;

S- =^ = dc.,z . (584)
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Tangent plane.

141. Corollary. If one of the surfaces is the tangent plane,

its equation, since it passes through the point of contact, is

by (197)

cos. « (z—

x

)+ cos. p (y—

y

Q )+ cos. Y (z—z )= 0, (585)

from which we find by differentiation

, COS. a
d-* z =—c^7 = d<- z°' <

o87
>

which substituted in (585), divided by cos. a, give, for the

equation of the tangent plane,

(*-*•>-Fr - Fir = °-
<
588

>

142. Corollary. If all the terms of the equation of the

given surface are transposed to the first member, and this first

member, which is a function of x, y, z, represented by V, and

if V becomes V
Q

at the point of contact, the equation of the

surface is

V — 0. (589)

The differential of this equation being taken on the hypothesis

that z is constant, in order to find d
e . x y Q ,

gives

d, x V .dx + d
c .

y
V . dy

Q = 0, (590)

whence, by (586),

'''" dx d,.
s
V cos.?

v ;

or _ _L_ = £?LJ! = £iLl. (592 )dc . xy cos.« dc . z VQ
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Tangent plane.

In the same way we find

1 cos. r dc. zV
d

c . s zQ
' cos.« d

c . xV
' (593)

and these values, substituted in (5S8), give, by freeing from

fractions,

4..F. (z-* )-K. yF (y-y„)-K..T. (*-*„) = «• (594)

This equation of the tangent plane compared with the com-

plete differential of (589), which is

d
c . sVo

dx o
+d

c .
y
Vo

dy
o
+dc . 2Vo

dz =0 (595)

shows that the equation of the tangent plane may be

obtained from that of the surface by changing in the

complete differential of the equation of the surface re-

ferred to the point of contact dx , dy , dz respectively

into(#—# ), {y— yQ ), (z— z ).

143. Corollary. The sum of the squares of (592) and (593)

increased by unity is

cos.^+Cos^+cos^y_(dc. xVQf+(dc .
v
V f+(dc

.z V f
c^« d^j2 ( }

or by (47) and putting

L =V[(de-,V )2 + (dc .
y
V )2 J^(dc. zVo y*] (597)

cos.«=%^o, dc.,V = L cos.a (598)

cos. p^tklXsL, dc.
v
V = L cos. ? (599)

cos. Y =M%L9
dc

. z V = L cos. y. (600)



COS . a cos•/5 cos . Y

X

dc. x

X = y—
d

c
.
y

#0

Vo
— z z

o

V
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Normal to surface.

144. The perpendicular to the tangent plane drawn

through the point of contact, is called the normal to

the surface.

145. Corollary. The angles «, p, y are, by (128), the angles

which the normal makes with the axes; hence, by (124) or

(598-600), the equations of the normal are

(601)

146. Examples.

1. Find the equations of the tangent plane and of the nor-

mal to the sphere.

Solution. If the sphere is that of equation (62), we have

V— Z2 +y2 + Z2 __#2 =
dc . zV = 2z

dc.
y
V = 2y

d
c

, zV = 2z

Z = 2 X/K + y§ + zg)r=2i2

^o „ Vo %o
COS. « = g", COS. /S = g-, COS. Y == -g-.

The equation of the tangent plane is, by reduction,
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Tangent and normal to ellipsoid.

The equations of the normal are, by reduction,

— — !- — —
x o yo % o

so that by (128) it passes through the origin and is radius.

2. Find the equations of the tangent plane and of the normal

to the ellipsoid of equation (335).

Arts. The equation of the tangent plane is, by reduction,

x
o
x

I y$y I

zo z
i q

The equations of the normal are

3. Find the equations of the tangent plane to the cone of

equation (364).

Ans. The equation of the tangent plane is

x° x
i
y°y.._ z° z —

A 2 -r B 2 c*-~ '

so that it passes through the origin.

4. Find the equations of the tangent plane and of the nor-

mal to the cylinder of equation (375).

Ans. The equation of the tangent plane is

ByQ y + CzQ z + M=^
so that it is perpendicular to the plane of y z. The equations

of the normal are

x = x

CzQ y — By z = (C—B) y z .
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Tangent and normal to paraboloid.

5. Find the equations of the tangent plane and of the nor-

mal to the paraboloid of equation (3/6).

Ans. The equation of the tangent plane is

2By y + 2Cz z + H(x + :r ) = 0.

Those of the normal are

2Byl(z— x ) = H(y — y )

Cz y— By z = (C—B)yQ z .

6. Find the equations of the tangent plane and of the nor-

mal to the cylinder, of which the base is a parabola, and the

equation is (384).

Ans. Put H cos. a -\- I sin. « — — £p C, and omitting the

numbers below the letters in (384) ; the equation of the tan-

gent plane is

z z = 2p(x-{-x
),

so that it is perpendicular to the plane of x y. The equations

of the normal are

V = I/o

z (z— *o) == 2p(z
c
— z)-
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Radius of curvature.

CHAPTER X.

CURVATURE.

147. The circle, which has the contact of the second

order with a curve at a given point, coincides more

nearly with the curve at that point than any other

circle, and its curvature is therefore adopted as the

measure of the curvature of the given curve at that

point. It is hence called the circle of curvature, and

its centre and radius are called, respectively, the centre

and radius of curvature.

148. Problem. To find the radius of curvature of a

given curve at any point.

Solution. Let q be the required radius of curvature, * the

angle which the normal to the given curve makes with the

axis of x, v ' the corresponding angle for the circle. Then,

at the point x
Q , yQ

of contact, we have

"o = V- (
603

)

But if s, s' are the arcs of the given curve, and of the

circle, we have, by (576),

ds = cosec. v. d x, d s' = cosec. v.' dx,

so that at the point of contact

ds =ds '. (604)
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Radius of curvature.

But it is evident from (574) that, since the radius of the

circle is constant, we have

ds = ds ' —
g d* '. (605)

But the differential of (561) gives

dr = sm^r d2
c . a;!/ dx

o ,
dr>

Q= sm. /
v' d2

c .
!e
y'
Q
dx of (606)

and since the contact is of the second order

dlVo = d ly'o>

so that by (603) and (606)

dr
Q
= dr

, (607)

which substituted in (605) gives

ds Q
=Qdv

, (608)

or omitting the cyphers below the letters,

ds dc s , ,„«.,* v

Q = —=-f-= dc
. v s. 609)

dv d
c
v v '

149. Corollary. Equations (609), (571), (576), (577), (606),

and (565) give

t = ^4^- =(^ = tt + ^.3r)-]*
(610)sm.2vd2

c . s y d\. s y d\. s y
v '

(
sec t)b N* ds

Q = -«^=^dl^ = d;= d<'* S '
<
611

>

150. Corollary. When the equation of the curve is given

in polar coordinates, the radius of curvature may be found by
means of equations (557) and (558). For these give

^ =-^^-(~) (612)

21
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Radius of curyature.

d r = dq>-{-ds— d(f— sin. 2 *d. (—-P-I (613)

i = ^ =
d^_^

djd^Y
q as as as \rd<pj

151. Examples.

1. Find the radius of curvature of the ellipse.

Solution. Equation (69) of the ellipse gives

B 2 x
ucxy — A 2

y

d*. x y = - B±
A 2

y
3

(A*y 2+B±x 2
)
2 A 2 iVs _ A 2 B 2

^ B± B± (A 2 sin. 2 r+S^cos^r)!

'

This value of the radius of curvature is the same also for the

hyperbola.

2. Find the radius of curvature of the parabola of equation

of B. I. § 180.

Ans. y+W ^ N* = 2p
4 p 2 4p2 sin. 3 T

'

3. Find the radius of curvature of the cycloid.

Ans. 4 R sin. J d = 4 JR cos. * — 2 N.

4. Find the radius of curvature of the spiral of Archi-

medes.

Ans.
2(2 ;* +<*>*)

'
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Evolute and involute.

5. Find the radius of curvature of the logarithmic spiral, of

which the equation is given in Example 7, § 133.

Ans. a? a/[1 + (log. a)*].

152. Problem. To find the centre of curvature of a

given curvature.

Solution. Let x 1) y l
be the coordinates of the centre of

curvature corresponding to the point of contact x, y of the

given curve, and, by B. I. §83, x
x
— x is the projection of the

radius of curvature upon the axis of x.

But, by B. I. § 85, this projection is also expressed by

Q cos. ,, = x
L
— x, (615)

whence z
1
= x -J- Q

cos. »•. (616)

In the same way we find

y x — y + Q sin. v. (617)

153. Corollary. If the two coordinates of the given

curve are eliminated between the three equations (616),

(617), and the given equation of the curve, the result-

ing equation, containing only the coordinates of the

centre of curvature, is the equation of the curve upon
which the centre of curvature is situated. This curve
is called the evolute of the given curve, for a reason

which will soon be given. The given curve is called

the involute of its evolute.

154. Corollary. The differentials of (616) and (617) are

dx
x
— dx

-f-
do. cos. v— sin. r. q d v (618)

dy
x
= dy -\- dQ. sin. v -|_ cos. \ Q d*. (619)
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Evolute and involute.

But by (576), (577), and (609)

sin. v.Qd v = dx (620)

cos. v. q dv '•==. — dy (621)

which, substituted in (618) and (619), give

dx
1
= dQ. cos. v (622)

dy
x
= dq. sin. v

. (623)

155. Corollary. If ? x
and v

x
are the angles, which the

tangent and normal to the evolute make with the axis of x,

we have, by (622) and (623),

tang. r
i
= — cot. v

x
= ~^- = tang, v (624)

ct x «

whence

f t
=v= in+ *, y

x
— ^7t-\-v=nJr r

) (625)

so that the normal to the involute coincides with the

tangent to the evolute.

156. Corollary. If s
x

is the arc of the evolute, we have,

by (622) and (623),

ds
x
=sf[{dx

xy + (dy
i y] = ±dQ

i (626)

so that the arc of the evolute increases at the same rate

that the radius of curvature of the involute increases

or decreases. Hence

JS
1 =;kJQ. (627)

157. Corollary. If CMM' (fig. 54.) is the involute, C[M
X
M[

the evolute, and if MMX) M'M[ are tangent to the evolute,

and consequently normal to the involute, we have
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Evolutes of different orders.

e = MMlt <?' = 31' M'
x

j Q
= 31' 31 ; — 3131

±
= jS— M

x
M±

t

so that 31'M; = 3I31
1 + 31

1
31[.

Hence if a string were wound around the evolute of

such a length, that, when drawn tight at Mj in the

direction of the tangent M31
1 , it would reach to M,

it would, when unwound and drawn tight at M{, reach

to 31', and its extremity would, in the process of un-

winding, describe the involute. The names of these

curves are derived from this property.

158. Corollary. If q x
is the radius of curvature of the

evolute, we have, from (Oil), (625), and (626),

d s , do

159. Corollary. The evolute of the evolute is called

the second evolute, and the evolute of the second evo-

lute the third evolute, and so on.

If, then, Qn is the radius of curvature of the nth evolute, and

\ the angle, which the tangent to this evolute makes with the

axis of x, (625) and (628) give

e.-=-±AT« (629)

Tn = * + in?v. (630)

160. Scholium. No more natural system of coordi-

nates of a curve could probably be devised than its

radius of curvature, q, and the angle, t
;
which its di-

rection makes with a given direction. A curve is

21*
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-Evolute.

readily referred to these coordinates by the equations

already given ; and from its equation referred to these

coordinates, the corresponding equation of either of its

evolutes is readily obtained by means of (629) and

(630).

161. Examples.

1. Find the evolute of the ellipse.

Ans. The equation referred to the coordinates of §
160 is

_ 3 A 2B 2 (A*—IP) sin . 2t
q ~ {A^ cos.2 t+ B2 sin. 27)f

'

2. Find the evolute of the parabola of equation of § 160.

Ans. Its equation is

6 p sin. t
Q ==

'a
•

COS. 4 T

3. Find the wth evolute of the cycloid.

Ans. Its equation is

q = 4 R cos. r,

so that it is a cycloid precisely equal to the given cycloid.

4. Find the nth evolute of the logarithmic spiral.

Ans. It is a logarithmic spiral.

5. Find the evolute of the curve of which the equation re-

sults from eliminating 9 between the two equations

y — R sin. 9 — R <P cos. 9

x = R cos. <p + R yjsin. <p.
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Involute of circle.

Solution. We have

d x = R(pd<p cos. <p

dy = R(pd<p sin. y

tang, t = tang. y , T = y

d s = JRt dx

Q = R r

Q ±
— d

c
. r Q == R,

that is, the radius of curvature of the evolute is constant, and

the evolute is therefore a circle.
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CHAPTER XI.

SINGULAR POINTS.

162. Those points of a curve, which present any

peculiarity as to curvature or discontinuity, are called

singular points.

163. Whenever a function is discontinuous, the cor-

responding curve found, as in § 5, is also generally dis-

continuous.

Thus if f. a; is a function of x, which is imaginary for all

values of x less than

x = a — AP (fig. 55.)

;

for all values contained

between x = a' = AP' and x = a" =z AP"
>

between x =z a'"= AP'" and x z= aIV= APly
,

and for all values greater than

x = av =z AP"

;

and is continuous for all values of x

between x = a z=z AP and x =z a' = AP',

between x =i a" — AP'' and x = a!"— AP'",

and between x = aIT = APIT and a; = av = APT
;
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its locus is composed of the different portions MM'', M"M"\
and MiyMr

.

If, for instance, this function were such as to have always

the same value

b = PM— P'N' = PW, &c.

wherever it was not imaginary, the locus of

would be the portions 31N', N"N!"
y and N"NY

, drawn par-

allel to the axis of x.

164. Examples.

1. Construct the locus of the equation

y — b — [log. (x — a)]- 1

in the vicinity of the point at which it stops j and find its tan-

gent at this point.

Solution. The logarithm of a negative number is imaginary,

and therefore the value of y is imaginary as long as x is less

than a ; but when x — a, we have

y — b= (log. 0)- 1 z= oo- 1 =i

V — ?>>

so that the point M (fig. 56.), for which

AP = a
}
PM= b

is the point at which the curve stops. At this point we have,

by § 108,

tang. rz=z dc .y = — [log. (x— «)]~ 2 (x

—

a)~ 1 = co

t— Jtt,

so that PM is the tangent to the curve at the point M.
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* The remainder of the curve near the point M is constructed

by finding different values of y for different values of x nearly

equal to a, and drawing the curve through the points M, M1

,

M", &c, thus determined. The figure 56 has been constructed

for the case in which

a = 2, b — I,

and, for the present example, extends to

x — AP" = 2.135, y == 0o, t = 118° 26'.

2. Construct the locus of the equation

y — b — (x — a) [log. (x — a)]- 1

in the vicinity of the point at which it stops ; and find its tan-

gent at this point.

Ans. This locus is, for the present example, represented

in fig. 57, from

x = — oo to x zzz a -{- 0*5 =r AP'.

The point where the curve stops corresponds to

x = a z= AP, where r = 0,

so that 31T parallel to AX is the tangent.

3. Construct the locus of the equation

y — b — (x — a—\) [log. (x — a)]- 1

and find the tangent at the point where it stops.

Ans. This locus is represented in fig. 58. The point

where it stops corresponds to

x =z a — AP, where r = J n,

so that PM is the tangent.
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4. Construct the locus of the equation

y — b = (x — a) log. (x — a)

and find the tangent at the point where it stops.

Ans. This locus is represented in fig. 59. The point

where it stops corresponds to

x = a == AP, where r — J w

so that PM is the tangent.

5. Construct the locus of the equation

y— b — (x — a) 2 log. (x — a)

in the vicinity of the point where it stops, and find the tangent

at this point.

Ans. This locus is represented in fig. 60, which, for the

present example, extends

from x =z — oo

to x=AP' = a + 0-223, where y=b— 0-075, r= 155° 57'.

The curve stops at the point corresponding to

x — AP = a, where r = 0,

so that 3IT, parallel to AX, is the tangent.

6. Construct the locus of the equation

y — b — (x — a) [log. (x — a)Y
v,

in the vicinity of the point where it stops, and find its tangent

at this point.

Ans. This locus is represented in fig. 61, which, for the

present example, extends

from x = — oo to x = AP' = a+ 0-368

;
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it stops at the point coresponding to

x = AP = a, where T= £ rc
i

so that PM is the tangent at this point.

7. Construct the locus of the equation

y — b = (x — a) 2 [log. (x— a)]
2

in the vicinity of the point where it stops, and find the tangent

at this point.

Ans. This locus is represented in fig. 62, which, for the

present example, extends

from x = — oo, to x = AP' = a+ 0-38
j

it stops at the point corresponding to

x ±j= AP — a, where r = 0,

so that MT, parallel to AX, is the tangent.

8. Construct the locus of the equation

y = log. (x+l) + zlog.a;

and find the tangent at the point where it stops.

Ans. This locus is represented in fig. 63 ; it stops at the

origin where the axis of y is the tangent.

9. Construct the locus of the equation

yz=mx log. x-\-n{a— x) log. (a— x)

and find the tangents at the points where it stops.

Ans. This locus stops at the points where

x — and x — a :
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at which points the values of y are, respectively,

y = na log. 0, and y — ma log. a
;

and the tangents are parallel to the axis of y.

Figure 64 represents this locus when

= 1, m = 2, n = 3,

and figure 65 represents it when

«=1, m = 2, ?i = — 3.

10. Construct the locus of the equation

y=zmx 2 log. x -(- n (a— x) log. (0— x)

and find the tangents at the points where it stops.

Ans. This locus stops at the points where

x = and x = ;

at the first of which points

tang, t = — rc log. (0— x) — n,

and at the second

Figure 66 represents this curve when

a = 1, m = 2, n =. 3;

and figure 67 represents it when

= 1, m =1 2, w = — 3.

11. Construct the locus of the equation

#=/i- *(/•*)" log./.*

in which /. x is a given function of z ; and find the points

where it stops.

22
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Ans. It stops when f. x becomes imaginary, or when it be-

comes negative.

Figure 68 represents this locus when

fx
.x — n~\, f.x — x2 — x,

in which case it extends

from x =z — oo to x =z 0,

where it stops, and extends again

from x = 1 = AP to x = oo.

The tangents at each of the points where it stops is parallel to

the axis of x.

Figure 69 represents this locus when

n = 1, fv x = x, f.x = z 2— Xy

so that the points of stopping are the same as in figure 68.

But the tangent at the point A is the axis of x, while that at

the point P is parallel to the axis of y.

Figure 70 represents this locus when

n — %> /i-z=l, /. x = x 2 — x,

so that the points of stopping are the same as in figure 68
;

but the tangent at each point is the axis of x.

Figure 71 represents this locus when

fv x = n = 1, f.x = x—-x2
,

so that the points of stopping and the tangents are the same

as in figure 68 ; but the curve extends from one point to the

other.

Figure 72 represents this locus when

»S=1, flt Z=ZXt f.Z=ZX—z2 f
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so that the points of stopping and the tangents are the same

as in figure 69 ; but the curve extends from one point to the

other.

Figure 73 represents this locus when

n = 2
t f1

.x=l, f.x=zz— x 2
,

so that the points of stopping and the tangents are the same

as in figure 70 ; but the curve extends from one point to the

other.

Figure 74 represents this locus when

n = l,f1
.z = (10z + l)-i~

f.z = z(x — l){x—2)(x— 4) (x - 5)

in which case it extends

from x = to x = 1 = AP , where it stops,

from x = 2 = AP2 to x = 4 = AP\ where it stops,

from z = 5 = AP to z =. oo.

The tangent at each point where it stops is parallel to the axis

of y.

Figure 75 represents this locus when

n = l.f1
.z = (Wx + \)-i

.

/ x = - x (I _ 1 )
(x - 2) (x - 4) (x- 5),

in which case it extends

from x = — oc to x = 0, where it stops,

from x = l = AP
1

to x= 2 =AP2 , where it stops,

from x = 4 = AP± to x = 5= AP
5 , where it stops

;

the points of stopping and the tangents are the same as in

figure 74.
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Figure 76 represents this locus when

« = l,/
1

. 2; = J(a;+ ])^( 2:_2)(x __3)(x~-4)(2 2:+3)-2

/* = x(x_l) (x-2) (i— 4) (x— 5);

in which case it extends as in figure 74, and the tangents at

the points P
1
and P

5
are parallel to the axis of y, but the

axis of % is the tangent at the points A, P2 , and P4 .

Figure 77 represents this locus when

n= 1, /r x = 4 (x+ 1) x* (x— 2) (s— 3) (x— 4) (10x+l)-
4

/.x = -x(x-l)(x-2)(x-4)(x— 5),

in which case, it extends as in figure 75, and the tangents are

as in figure 76.

Figure 78 reprents this locus when

»=!, f1
.x=(10x + l)-i

f.x = x (x-1) (x— 2) (x— 3) (x— 4) (x— 5),

in which case it extends

from x=— oo to x= 0, where it stops,

from z=zl=AP
1

to x= 2z=:^4P2 , where it stops,

from x= 3= AP 3 to x= 4 = AP±, where it stops,

from x= 5= ^lP
5

to x= oo;

the tangent at each point where it stops is parallel to the axis

of y.

Figure 79 represents this locus when

71=1, ^.X^^IOX+I)-*
/.*=— x(x— l)(x — 2)(z— 3)(x— 4)(x_ 5),

in which case it extends



§ 164.] SINGULAJR POINTS. 257

Points of stopping.

from x= to x= 1 = AP 1} where it stops,

from 2=2 = AP2 to z= 3 = AP
3 , where it stops,

from x= 4c = AP
4:

to z = 5 = .4P
5 , where it stops

;

the points of stopping and the tangents are the same as in

figure 78.

Figure 80 represents this locus when

n = l
) f1

.x=i(x+l)x2(x-2)(x-3)(z-4)(2x+ 3)-2

/.z = z(z_l)(z-2)(z-3)(z--4)(z-5),

in which case it extends as- in figure 78, and the tangents at

the points P
x
and P

5
are parallel to the axis of y\ but the

axis of z is the tangent at the points A, P2 , P 3 , and P4 .

Figure 81 represents this locus when

n= l,/
1
.i= 4(i+ l)z2(x— 2)(z— 3)(z—4)(10z+l)-«

/.z=— z(z— l)(z-2)(z— 3)(z— 4)(z—5),

in which case it extends as in figure 79, and the tangents are

as in figure 80.

Figure 82 represents this locus when

n= 1, f1
.x = ±x

/.z = — 6z(z_ 1)2 (z — 2),

in which case it extends from

i = 0toz = 2 = ^4P2 .

Figure~83 represents this locus when

»= i; /1
z = iz(« — i)-i

/.z = — 6x (z — 1)2 (z — 2),

in which case it extends as in figure 82.

22*
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Figure 84 represennts this locus when

f.x = x-j- \/x,

in which case the portion AM of the curve, which corresponds

to the positive value of the radical, extends

from x = to x z=i oo
j

the portion P
1
M

1 , which corresponds to the negative value

of the radical extends

from x = 1 = AP
x

to x = oo .

Figure 85 represents this locus when

n = 2, fr x=l
f.x — x-\-\/x,

in which case the portions extend as in figure 84.

Figure 86 represents this locus when

n = 0, fv x = (x2 — x)

f.x — x-\- s/x,

in which case the portions extend as in figure 84,

Figure 87 represents this locus when

71— 1, fv Xz=. \0g. f.X

fx—x-\- */x,

in which case the portions extend as in figure 84.

Figure 88 represents this locus when

n=z 1, f1
.x=l

fx=z{x + */x)*,
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in which case each portion extends from

x — to x r= oo

.

Figure 89 represents this locus when

n = l
t fv x=(x + */x)-i

f.X=(x + *Sx)2

in which case the portions extend as in figure 88.

Figure 90 represents this locus when

n— 1, fx
.x — log./, x

f.x = (x + *Sx)2,

in- which case the portions extend as in figure 88.

Figure 91 represents this locus when

n = 0, f1
.x=(x2 — x)2\og.f.x

f.x=(x + V*) 2
,

in which case the portions extend as in figure 88.

Figures 92 - 99 represent this locus when

f1
.x=n=l, /.x = a + V(4— x 2

),

in which case it stops at the values

x=—AP=l—V(4— a 2
) andxz=^P" = V(4—

a

2
).

The tangents at the points P' and P" are parallel to the axis

of y.

In figure 92, a = — 1.5.

In figure 93, a = — 1

.

In figure 94, a =z — 0.5.

In figure 95, a =. .
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In figure 96, a r= 0.5.

In figure 97, a = 1.

In figure 98, a z=. 1.5.

In figure 99, a =. 2.

12. Construct the locus of the equation

y=f'X + mfv x

when m is infinitely small and fx
, x a junction, which is not

infinite while x is finite, but is alternately real and imaginary.

Solution. Since m is infinitely small, the part mfx
.x may

be neglected when ft
.x is real, but when fx

. x is imaginary,

the value of y is imaginary, so that if figure 100 is the locus

of equation

y — f. * ;

the same figure, with the dotted parts omitted, which corre-

spond to the imaginary values oif1
.x

)
represents the locus

of the given equation.

Thus, the locus of the equation

y = \/{R 2 — x2
) + 0-00000000001 X xn log. x

differs insensibly from the semicircle BCB1
(fig. 101.), of

which R is the radius. But it must be remarked, that, when

n is zero, the curve is suddenly turned into the form of a hook

at the points B and B', so as to become tangent to the axis

of y, assuming a form similar to that of the dotted line, but

of indefinitely less extent.

13. Construct the locus of the equation

r=f.<p + mfi.q.
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expressed in polar coordinates, and in which m is infinitely

small, and fx
. q finite when real.

Solution. If MM' M"M '" &c. fig. (102.) represent the

locus of

r=-f.q>,

the same curve with the dotted parts omitted represents the

given curve, the dotted parts corresponding to the imaginary

values offv cp.

Thus, if /• 9 = -R>

the curve consists of several successive arcs of the same cir-

cle.

165. A conjugate point is one separated entirely from

the rest of the curve, but included in the same algebraic

equation.

A conjugate point is indicated algebraically by the condition

that coordinates of this point are real, while the coordinates

of no adjacent point are so.

166. Examples.

1. Construct the locus of the equation

V =f' x + m fi- x
>

in which m is imaginary and fx
. x real.

Solution. If the curve (fig. 100.) is the locus of

V = f- z>
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and if M, M', &c. are the points which correspond to the ab-

scissas, for which

the locus of the given equation consists of the series of conju-

gate points M, M'
}
&c, without any continuous curve.

If f. x -= a x -|- b
t

all these points are upon the same straight line.

2. Construct the locus of the equation

(y —/ *)
2 + (y —/.•*)" = o-

Solution. The sum of two squares cannot be zero unless

each square is zero ; so that the given equation is equivalent

to the two equations

y— f.x = t y—f1
.x = 0;

that is, the coordinates of all the points of the required locus

satisfy these two equations.

If, then, App< P"P<»P" P* &c. (fig. 103.) is the locus of

the equation

and if AP
1
PI P[P" p\P<

P

lY P 1

? &c. is the locus of the

equation

the required locus is the series of conjugate points A, P'}
P"

9

PIV
, &c, in which these curves intersect.

Thus the locus of the equation

(X — fl)2 + (y - 6)2 =
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is the single conjugate point of which the coordinates are a

and b.

3. Find the conjugate points of the locus of the equation

y = f- z +fi- x f2 - x
>

in which fr x and f2 . x are sometimes imaginary.

Solution. \ffv % is imaginary for values of x between a

and b, and, iff2 . x vanishes for one or more of the values of

x contained between a and b ; the given equation is reduced

for these values off2
. x to

y = /-*>

so that the corresponding points of the curve are conjugate

points situated upon the locus of the equation

9 = /• *

In the same way, those points of this locus are conjugate

which correspond to values of x, for which fx . x vanishes,

while f2
.x is imaginary.

Thus the point P , for which x = — 1 is a conjugate point

upon the axis of x in the curve of figure T6.

This locus is represented in figure 104, when

f.X= K/(±-x2) ) fi
:X = s/(l-x2),f2 .X=x\0g.X-l.

It has four conjugate points, 31 , J/j, 31 , 31^, situated

upon the circle of which the origin is the centre, and of which

the radius is

AP = — 2.

The common abscissa of two of these points is

z = — AP> = — 1,



264 DIFFERENTIAL CALCULUS. [b. II. CH. XL

Branch. Multiple points. Cusp.

and of the other two

x = AP" = 1-763.

4. Construct the locus of the polar equation of example 13,

§ 164, when m is imaginary.

Arts. It represents a series of conjugate points, upon the

curve of which the equation is

r—f. T
These points correspond to the values of <p, which satisfy the

equation

A- v = o.

When f.<p = R,

the points are all situated upon the circumference of which R
is the radius, and the origin the centre.

167. A branch of a curve is a continuous portion of

it, which extends from one point of discontinuity to

another.

When a branch returns into itself, so that its com-

mencement is the continued curve of its end, it is called

an oval.

168. A point through which the curve passes more

than once, or at which two or more branches termi-

nate, is called a multiple point.

A multiple point at which two or more branches stop,

and have the same tangent, is called a cusp. If a branch

begins and ends at a point, having but one tangent at

this point, without being continuous, this point is also

a cusp.
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A cusp is said to be of the first kind, when the two

branches at the point of contact lie upon opposite

sides of the tangent, as at M (fig. 106.) ; but if the two

branches lie upon the same side of the tangent, as at

M (fig. 107), the cusp is said to be of the second

kind.

169. In the algebraic consideration of curves, they

are naturally divided into portions, according to the

number of ordinates which correspond to the same

abscissa ; or of radii vectores, which correspond to the

same angle.

"The algebraic portions of a curve are not to be confounded

with the geometric branches; for the same portion may consist

of several branches, or several different portions may be united

into one branch.

Thus the cycloid consists of but one portion, but of an infi-

nite number of branches ; whereas the circle, the ellipse, and

the parabola consist of two portions, but only of one branch

;

and though the hyperbola consists of two portions and two

branches, yet half of each portion belongs to each branch.

170. Problem. To find the cusps of a given curve.

Solution. 1. If a portion M'MM" (fig. 105.) of a curve,

whose equation is expressed in rectangular coordinates, has a

cusp at a point M, it is evident that the tangent TM at this

point must be perpendicular to the axis of x. For if it were
not so, as in figure 106, there would, for the abscissa AP'
very near to AP, be the two ordinates P ' M' and P1 M[, so

that MM 1 and MM[ would be two different portions of the

curve, and not the same portion, as we here suppose.

23
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Moreover, the tangents M' T 1 and M" T", which are in-

finitely near to MT must evidently be inclined to the axis of

x
}
one by an acute angle and the other by an obtuse angle, so

that

tang. x—dc.y

must change its sign at the point M[ by passing

through infinity if the point M is a cusp, formed by

two branches of the same portion of the curve ; and

such a cusp is necessarily of the first kind.

2. If a cusp is formed at the meeting of two

branches of different portions, as at M {figs. 106 and

107) and if the common tangent MT is not perpen-

dicular to the axis of x ; the ordinates for both por-

tions, which correspond to the abscissas AP and AP',

one of which is greater and the other less than AP,
must be imaginary for one of these abscissas, and real

for the other. The cusp is of the first kind, as in

figure 106, if the value of r is greater than MTX
upon one branch, and less than MTX upon the other

branch ; but it is of the second kind, as in figure

107, if the value of r is greater or less than MTX
upon both branches.

But if the common tangent is perpendicular to the

axis of x at M {figs. 108 and 109), the ordinates

for the two portions must be both increasing, or both

increasing in proceeding from M. The cusp is of

the first kind, as in figure 108, when it is the end

of one branch and the beginning of the other ; but it
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is of the second when it is the end or the beginning

of both branches , as in fig. 109.

171. Problem. To find the points where two por-

tions of a curve unite in the same branch.

Solution. The point M (figs. 110 and 111) is one

of the required points, if the two portions MM' and

MM[ have a common tangent at this point, while the

point is not a cusp, but - merely a point where both the

portions stop.

172. Corollary. The portions M M' M2 and

MM'
X
M

2 (fig. 112) compose an oval, if at their two

extremities M and M2 they unite in a continuous curve

and have no point of discontinuity between their ex-

tremities.

173. When the curve is expressed in polar coordi-

nates, the analytic portion depends upon the number of

radii vectores which correspond to the same angle.

But it must not be overlooked that the same direction

is determined by angles which differ by any entire mul-

tiple of four right angles, so that a curve like one of the

spirals of B. 1, <§> 98, may consist of but one portion,

although there are an infinite number of radii vectores

in each direction.

Multiple points are obtained in any portion, when the

same value of the radius corresponds to two or more

angles, which differ by any entire multiple of four right

angles.
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174. Examples.

1. Find the cusps of the cycloid.

Solution. The cycloid obviously consists of but a single

portion. If there is a cusp, the tangent at it must, then, as

in § 170, be perpendicular to the axis of x ; that is, we must

have, by § 131, example 5,

cotan. ^ b z=z oc
,

which gives

J 3 = n Ttj & = 2« n,

in which n is an integer.

But this value of & gives, by (131),

y = 0,

and since we can never have

cos. 6 > 1,

the value of y is never negative, so that there is a cusp at

each of the points where

y = 0.

2. Find the branches of the locus of Example 1, § 164.

Arts. It consists of two branches, one of which, MM
(fig. 56.), begins with

x = a, y = b,

and extends to

x = a-{- I, y — — qo .

The second M
x
M[ begins with

a:==a + l, y = oo,
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and extends to

X = oo
, y = b.

3. Find the branches of the locus of Example 2, § 164.

Ans. It consists of two branches, one of which MM' (fig.

57.), begins with

x = a, y = b,

and extends to

x = a -\- 1, y = — oo.

The second M x
M[, begins with

x— a -\- 1, y = oo,

and extends to

£ = oo
, y = oo .

The least value of y in this second branch is found by

<$ 113, to be

y= PjilSf; = 2.718, corresponding to z= 4P;= 2.718.

4. Find the multiple point of the locus of Example 11,

§ 164, when

» = 0, f1
.x=(z*—x)

f.x — x-\- */x.

Ans. There is a multiple point when

x = 1 = AP2 , y = 0,

at which point the portion corresponding to the negative value

of the radical begins, its tangent being P2 T2 (fig. 86.),

drawn parallel to the axis of y, and the portion corresponding

to the positive value of the radical passes through the same

point, its tangent being P2 T2\ so drawn that

P2 T2 X—Z4P M,
23*
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5. Find the multiple points of the locus of Example 11,

§ 164, when

n=l, f1
.z = log.f.z

f.x = i(x-\- */y>).

Ans. There are two multiple points; one is atP
x

(fig. 113.)

where

xz= 1, yzrO;

at which point the branch corresponding to the negative value

of the radical begins, while the other branch passes through

it; P
x
T

x
is the tangent to the former branch, and the axis

of x is tangent to the latter branch. The other multiple point

is at M2 , where

x =196, y = 0-45;

the value of r for the former branch is

r — 149° 15',

and that for the latter branch is

r == 60° 35'.

6. Find the cusp and the other multiple point of the locus

of Example 11, § 164, when

n =z 1, fv z =z I, f. x = (x + ^/x)2.

Ans. The origin A (fig. 88.) is a cusp of the second kind,

and the axis of x is the tangent at this point.

The other multiple point M
x
corresponds to

x — 0-328, y == 0-169.

The values of * at this point are

T = 69° 29', and r = 6° 30'.
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7. Find the branches and the multiple point of the locus of

Example 11, § 164, when

n=l, fv z = (x + A/z)-\ f.x = (x + */x)2.

Ans. The curve consists of but one branch, for the two

portions unite in one branch at the origin A (fig. 89.)

The multiple point corresponds to

x z= 0-544, y = 0-634,

at which point the two values of * are

t — 76° 35', r — 124° 13'.

8. Find the multiple points of the locus of Example 11,

§ 164, when

n = 1, /i-z = log./.z

/. x = (x + s/xy.

Ans. The origin (fig. 90.) is a cusp of the second kind, the

tangent at this point being the axis of x.

31
1

is a multiple point corresponding to

x = 0-142, y z=z 0-465,

at which point the two values of * are

t— 114° 37', t — 21° 40.

312 is a multiple point corresponding to

x ±= 0-544, y — 0-402,

at which point the two values of t are

r — 53° 17', r — 172° 29'.

9. Find the multiple points of the locus of Example 11,

§ 164, when
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n = 0, fx
x = (x2 — x) 2 log./, x

f.x=(x + s/x) 2
.

Arts. The origin (fig. 91.) is a cusp of the second kind, the

tangent at this point being the axis of x.

M
x

is a multiple point corresponding to

z = l, y = 0,

at which the axis of x is the common tangent to the two

branches of the curve, and the contact of the two branches is

of the second order.

10. Has the locus of Example 11, § 164, any cusp, when

n=zl,f1
.x= ix(x—l)-i,/.x=—6z(z—l)

2 (s— 2)?

Arts. It has none.

11. Find the multiple point of the locus of Example 11,

§ 164, when

f1
.x = n=l, /.x = a + V(4-x2).

Arts. When a is zero, or negative, there is no multiple

point.

When a is positive, and less than

c- 1 == [2-71828]- 1 = 0-3679,

the curve consists of a single branch without any multiple

point.

When a = e- 1 = 0-3679

the curve consists of three branches, as in (fig. 114), and has

two cusps of the second kind, correspondsng to

z = ±2, y = — a = — 0-3679.
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When a is greater than er~ 1 and less than ^, the curve con-

sists of one branch with two multiples, as in figure 115, where

a = 4,

and the two multiple points correspond to

x = ± 1-984, y — — 0-275.

The values of * at one point are

t — 102° 38', and % = 97° 45',

at the other

*=: 77° 22', and r — 82° 15'.

When a — J ~ 05,

the curve (fig. 96.) has two multiple points at the beginning

and end of its branch, corresponding to

x — ± 1937, y — 0.

The values of * are

T — 90°
, ,
rrr90°± 45° .

When a is greater than J and less than 2, the curve consists

of a single branch, with no multiple points.

When a = 2,

the curve (fig. 99.) is an oval.

12. Construct the locus of Example 11, § 164, when

f1
.x = n = l, f. x= a + \/(«2 — z2 ).

Ans. Where a is greater than J, the curve is an oval, as in

figure 99, where

a — 2.

When a = \ = 05,
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the curve (fig. 116.) consists of a single continuous branch,

which returns into itself; and it has a multiple point at the

origin, where the curve has a contact with itself, the common
tangent being the axis of x.

When a is less than J and greater than

c-i = 0-3679,

the curve consists of a single continuous branch, which re

turns into itself; and has two multiple points, as in figure 117,

where

a = 0-4,

the two multiple points correspond to

x = ±0-31, y= — 0-27.

The values of * at one point are

t = 144° 53' r = 131° 41',

and at the other

r = 35° 7' r = 45° 17'.

When a = e~* = '0-3679,

the curve (fig. 118.) consists of two branches and two cusps

of the second kind, corresponding to

x = a, y = — a.

When a is less than er~ l
, the curve is an oval, as in figure

119, where

a = 0-2.

13. Construct the locus of the equations of Example 5,

§ 161, and find its cusp.

Arts. This locus is represented in figure 120. Its cusp is

of the first kind, and corresponds to
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<P = 0, z = 1, y = 0,

where the axis of z is the tangent.

14. Construct the locus of the equation

y
2 — %%

and find its cusp.

Ans. This locus is represented in figure 121. Its cusp is

of the first kind, and is the origin, where the axis of x is the

tangent.

15. Construct the locus of the equation

y
2 == x4 — x 3

,

and find its cusp.

Ans. This curve (fig. 122.) consists of three branches, two

of which extend from

x = — oo to x — 0,

where there is a cusp of the first kind.

The third branch extends from

x — 1 to x — oo

.

16. Construct the locus of the equation

y
2 — x 3 — x*,

and find its cusp.

Ans. This locus (fig. 123.) consists of a single branch,

which has a cusp of the first kind at the origin.

17. Construct the locus of the equation

and find its branches.

y
2 =z x 4* — x2

,
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Ans. This locus (fig. 124.) consists of two branches, one of

which extends from

X Z=Z — oo to x = — 1

,

and the other from

x — 1 to x =z oo

,

and a conjugate point, which is the origin.

18. Construct the locus of the equation

y
and find its multiple point.

x2 — x±,

Ans. This locus (fig. 125) consists of one branch, which

returns into itself, and has a multiple point at the origin, where

the values of r are

r = dz 45°.

19. Construct the locus of the equation

and find its multiple point.

Ans. This locus (fig. 126.) consists of a single branch,

which returns into itself, and has a multiple point at the origin,

where it has a contact with itself. The tangent at the origin

is the axis of x.

20. Construct the locus of the equation

y
2 — x 3 — x.

Ans. This locus (fig. 127.) consists of an oval, which|ex-

tends from
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X = — 1 to x z= 0,

and a branch which extends from

x = 1 to x ±t oo .

21. Construct the locus of the equation

y
2 z= x 5 — a;

3
,

and find its cusp.

Ans. This locus (fig. 128.) consists of a branch, which ex-

tends from

x = — 1 to x = 0,

where there is a cusp^and a branch, which extends from

x — 1 to x — 00 .

22. Construct the locus of the equation

%J
2 = x 2 (1 —x2

)

3
,

and find its multiple points.

Ans. This locus (fig. 129.) consists of two branches, which

extend from

x = — 1 to x == J.

They cross at the origin, where the values of t are

t = d= 45°,

and there are two cusps of the first kind, corresponding to

z = d= 1.

23. Construct the locus of the equation

y
2 — x± (1 — x2

)
3

,

and find its multiple points.

24
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Ans. This locus (fig. 130.) consists of two branches, which

extend from

x = — 1 to X = 1.

There are two cusps corresponding to the two values of x, and

the origin is also a multiple point, where the two branches are

in contact.

24. Construct the locus of the equation

y* = (2 — x2) (1 — X2) d —>),
and find its branches.

Ans. This locus (fig. 131.) consists offa succession of three

ovals, which extend respectively

from x — — \/2 to x — — 1

from x — — \ZJ to x — s/\

from x = 1 to x = s/ 2.

25. Construct the locus of the polar equation

r = a -f- sin. m cp,

and find its multiple points and branches.

Ans. If m is an integer and a greater than 1, this locus is

oval, as in figure 133, where

a = 2, m = 3,

If m is a fraction and a greater than 1, this locus is a curve,

which returns into itself after as many revolutions of the radius

vector as there are integers in the denominator of m.

Thus, in (fig. 134.),

a = 2, m h
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there is a multiple point corresponding to

q>
— or — 360°, r — 2,

at which point the values of e and * are

« = r — 75° 58', and = r = 104° 2'.

In (fig. 135.) a — 2, m — §,

there are three multiple points corresponding to

q>=z0° or =360°, <pz=120° or =480°, ^= 240° or =600°,

at each of which points the values of r and * are

r = 2, s = 53° 8', and . = 126° 52'.

In (fig. 136.) a = 2, m = J,

there are two multiple points, one of which corresponds to

<p z= 90° or = 450°, r = 2.5

6 = 83° 25' and * = 96° 35',

and the other to <p
— 630° or = 990°, r = 1-5.

a — 79° 7' and * = 100° 53'.

In (fig. 137.) a = 2, m = f

,

there are four multiple points ; at two of these points we
have

q>
— 45° or = 765°, <p

— 225° or = 585°,

and at each of these points

r = 2.5, * = 77°, and * — 103°

;

at the other two points we have

<p = 315° or == 1035°, <p — 495° or = 855°,
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and at each of these points

r — 1.5, b — 68° 57', and * — 111° 3'.

In (fig. 138) a — 2, m= J,

there are three multiple points ; one of which corresponds to

<P = 0° or == 720°, r — 2

* — 82° 53' and e — 97° 7'

;

the second corresponds to

cp — 180° or == 540°, r — 2.707

s = 86° 16' and « = 93° 44';

the third corresponds to

9 = 900° or = 1260°, r = 1.293

b = 82° 13' and * = 97° 47'.

In (fig. 139.) a = 2, m = f,

there are nine multiple points ; three of which correspond to

9= 0° or =720°, ^=240° or = 960°, y= 480° or =1200°,

and at each of these points we have

r = 2, . = 69° 27', and * = 110° 33'
;

three correspond to

= 60° or =1140°, 9=180° or =540°, <p—660° or = 1020°,

and at each of these points, we have

r == 2.707, * = 78° 55', and * = 101° 5';

three correspond to
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<*>=300° or = 1380°, <p z= 420° or = 780°, <p=900° or= 1260°

and at each of these points we have

r = 1.293, • = 67° 42', and * = 112° 18'.

If a — 1 and m an uneven integer, or a fraction whose

numerator is uneven, the origin is a multiple point consisting

of the union of as many cusps as there are in the integer m,

or the numerator of the fraction m.

Thus, in (fig. 140.) a = 1, m = 1,

the origin is a cusp, and the tangent is the axis of y.

In (fig. 141.) a — 1, m = 3,

the origin is an union of three cusps, and the three values of

t at this point are

r — 90°, r — 210°, r — 330°.

In (fig. 142.) a = 1, m = 5,

the origin is an union of five cusps, and the five values of * at

this point are

T == 54°, r = 126°, t -= 198°,

r = 270°, r t= 342°.

In (fig. 143.) a = 1, m = J,

the origin is a cusp, and the tangent at this point is the axis of

x. There is a multiple point corresponding to

9 = 0° or z= 360°, r = 1

a = 63° 26' and e = 116° 34'.

In (fig. 144.) a = 1, m = },

24*
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the origin as an union of three cusps, and the three values of

t at this point are

r = 60°, t = 180°, t = 300°.

There are three other multiple points corresponding to

9>— 0° or =360°, y = 120° or =480°, y= 240° or =600°,

at each of which points we have

r=l, a — 33° 41', and . == 146° 19'.

In (fig. 145.) a = 1, m = ^,

the origin is a cusp, and the tangent at this point is perpen-

dicular to the axis.

There are two other multiple points corresponding to

<r= 90°, or =450°, y= 630° or =990°,

at each of which points we have

r — 1, s — 71° 34', and * = 108° 26'.

In (fig. 146.) a = 1, M=z f,

the origin is an union of five cusps, and the five values of r at

this point are

T = 18°, t — 90°, r = 162°, t — 234°, r — 306°.

There are ten other multiple points ; five of these points cor-

respond to

^= 90° or =450°, <p= 306° or =666°, 9= 528° or =882°

if =z 18° or = 738°, 9 = 234° or = 954°
;

for each of these points

r = 1.5, « = 46° 6', and * = 133° 54',

^^^HM
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the other five points correspond to

^=198° or =558° cp— 4U° or =774°, ^ = 630° or =990°,

cp = 126° or == 846°, <p =h 342° or = 1102°.

for each of these points

r = 0.5, e = 19° 6 ; and £ = 160° 54'.

In (fig. 147.) a = l, m = i,

the origin is a cusp, and the tangent at this point is perpen-

dicular to the axis.

There are four other multiple points corresponding to

q>= 270° or = 630°, r == 9.045, \
— 86° 16' and b— 93° 44'

<p=1170°or = 1530°, r= 0.955, *=58° 23' and ^ — 121° 37/

q>— 90°orz= 810°, r= 6.545, * = 81° 39' and a — 98° 21'

q>
— 990° or = 1710°, r= 0.345, s — 19° 58' and s — 160° 2'

In (fig. 148.) a = 1, m = f

,

the origin is a union of three cusps, at which point the values

of T are

r = 90°, t — 210°, t — 330°.

There are twelve other multiple points ; three of these points

correspond to

9= 90° or =810°, q>=690° or == 1410°, <p= 210° or =1290°

for each of these points

r = 1.809, b — 78° 58' and • = 101° 2'
;

three points correspond to
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<p= 270° or = 630°, g> == 870° or = 1230°, 9= 30° or =± 1470°

for each of these points

r = 1.309, e — 66° 27', and a = 113° 33';

three points correspond to

<p =570° or = 930°, 9 =, 1170° or 1530°, v
=330° or = 1770°

for each of these points

r = 0.691, i = 50° 27', and e = 129° 33'

;

three points correspond to

<p=: 390° or =1110°, 9 = 990° or = 1710°, <p= 510° or 1590°

for each of these points

r = 0.191, = 28° 26', and £ = 151° 34'.

When m is an even integer, or a fraction whose numerator is

even, each cusp at the origin has another cusp opposite to it,

which causes both of them to disappear ; and the origin, in-

stead of being an union of cusps, is a multiple point where

the curve has a contact or several contacts with itself.

In (fig. 149.) a = 1, m = 2,

the curve consists of two ovals, which have a contact at the

origin, the value of T at this point is

* = 135°.

In (fig. 150.) a = 1, m = 4,

the curve has two contacts with itself at the origin ; the two

values of r at this point are

t = 67° 30', r = 157° 30'.
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In (fig. 151.) a = 1, m = §,

the curve has a contact with itself at the origin, and consists

of two distinct branches. The value of * at the origin is

r = 45°.

There are four other multiple points ; two of these points cor-

respond to

<P
= 45° or == 765°, cp = 2:25° or = 585°

for each of these points

r = 1.5, « = 63° 57', and * = 111 3';

two points correspond to

9 = 315° or = 1035°, 9" = 495° or = 855°

for each of these points

r = 0.5, . = 40° 54 , and = 139° 6'.

In (fig. 152.) a = 1 *=;•$»

the curve has two contacts at the origin ; the two values of *

at this point are

t = 22° 30', r = 112° 30'.

There are eight other multiple points ; four of these points

correspond to

<P= 22° 30' or = 382° 30', y= 292° 30 or = 652° 30^

9= 562° 30 or — 922° 30', <f = 112° 30' or = 832°W
for each of these points

r = 1.5, b= 52° 25', and * = 127° 35',

four points correspond to
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y =:
157°30' or = 517°30', <p=427°30' or z=787°30'

9— 697° 30' or = 1057° 30', 9= 247° 30' or — 967° 30'

for each of these points

r = 0.5, a = 23° 25', and * = 156° 35'.

In (fig. 153.) a = 1, m = f

,

the curve consists of two distinct branches, which are in con-

tact at the origin ; the value of <p at this point is

9 = 135°.

There are eight other multiple points ; two of these points

correspond to

9 = 315° or = 1035°, 9 = 135° or = 1215°

for each of these points

r = 1.809, * = 82° 36', and « = 97° 24';

two points correspond to

9
= 45° or = 405°, 9 == 945° or = 1305°,

for each of these points

r = 1.309, * = 73° 48', and e = 106° 12';

two points correspond to

9 = 495° or =855°, 9 = 1395° or = 1755°,

for each of these points

r = 0.691, * = 61° 10', and « = 118° 50';

two points correspond to

9 = 765° or = 1485°, 9 = 585° or = 1665°,

i^^H^
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for each of these points

r = 0.191, ^ = 39° 5', and * = 140° 55'.

When a is less than unity, the origin is a multiple point, and

several branches of the curve stop at this point, if the negative

values of the radius vector are neglected, while they continue

through it if these values are retained. This example, there-

fore, furnishes an analytic exception to the method of avoiding

negative radii vectores given in B. I. § 45. In the following

figures the dotted portions correspond to the negative radii

vectores.

In (fig. 154.) * — i, m= 1,

the two values of r at the origin are

T = 30°, r = 150°.

In (fig. 155.) a = h m = 2,

the two values of ? at the origin are

T = 105°, t = 165°.

Whether the dotted parts are included or not, the curve is

continuous.

In (fig. 156.) a = J, m = 3,

the six values of r at the origin are

t= 10°, t= 50°, r= 70°,

t = 110°, ^130°, t = 170°.

In (fig. 157.) a = %, m = 4,

the four values of t at the origin are
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T = 52° 30', t = 82° 30',

T = 142° 30', * = 172° 30'.

In (fig. 158.) a = £, m — £,

the two values of r at the origin are

r == 60°, t = 120°.

There is another multiple point corresponding to

^ = 0° or == 360°, r = 0.5, t= 45° and = 135°,

or 9=540°, r =— 0.5, r = 90°;

the common tangent at this point is perpendicular to the axis.

In (fig. 15&.) a = h m =
f

»

the six values of t at the origin are

r= 20°, t= 40°, r= 80°,

r = 100°, t = 140°, r == 160°.

There are three other multiple points, corresponding, respec-

tively, to

9 = o° or = 360°, <p
= 12° or = 480°, <p = 240° or = 600°

for each of which r = 0.5,

or to

9 = 180°, y = 420°, 9 = 660°,

for each of which r = — 0.5

;

at each of these three points the values of s are

E = 18° 26', b = 161° 34', and 8 = 90°.

In (fig. 160.) a = J, m = £,

the curve has a contact with itself at the origin, the tangent
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at this point is perpendicular to the axis. There are three

other multiple points ; one corresponds to

<P = 90° = 450°, r = 0.5, = 60°, and a = 120
;

the two others correspond to

<P = 555° 48', cP — 1064° 12', r = 0.408,

or to

cp = 735° 48', tp = 883° 12', r = — 0.408,

and at one of these two points,

b = 129° 7', and e = 71° 8'

;

at the other,

£ = 50° 53', and e = 108° 52'.

In (fig. 161.) a = t, m = f.

The curve consists of two ovals and a continuous re-entering

branch, which has a contact with itself and with each of the

ovals at the origin ; the value of t at the origin is

r ~ 45°.

There are two other multiple points, corresponding to

cp = 225° = 585°, y == 45° = 765°
;

at each of these points

r — 1, « — 60°, and e = 120°.

In (fig. 162.) a = £, m = f.

The curve has several contacts with itself at the origin ; the

values of t at this point are

r == 67° 30r

, t = 157° 30'.

25
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There are four other multiple points, corresponding to

<P == 22° 30' or — 382° 30', 9= 292° 30' or =652° 30'

<9= 562° 30' or =: 922° 30', y= 1 12° 30' or — 832° 30'

at each of these points

r = 1, « = 40° 54', and 8 = 139° 6',

In (fig. 163.) a = i m = £.

The two values of r at the origin are

% = 60°, r=. 120°.

There are four other multiple points ; one corresponds to

g> = 0° or = 720°, r — 0.5,

r — 63° 26' and t — 116° 34';

one point corresponds to

cp — 180° or = 540°, r — 1.207,

r — 81° 40' and r — 98° 20'

;

one point corresponds to

9 — 761° 4', r = 0.322, . = 127° 14',

or to

9 = 41° 4', r — — 0.322, . =5 66° 15'

;

and one point corresponds to

cp = 1218° 56', r = — 0.322, . = 113° 45',

or to

<p as 1398° 56', r = 0.322, * =• 52° 46'.

In (fig. 164.) a = J, W'=?|
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The six values of * at the origin are

r = 20°, r= 40°, r= 80°,

r = 100°, t = 140°, * = 160°.

There are fifteen other multiple points ; three correspond to

<p= 0° or — 720°, q>= 240° or = 760°, <p= 480° or= 1200°

r = J, = 33° 41', and s = 146° 19'

;

three correspond to

¥= 180° or=540°, ? = 660° or = 1020°, 9 = 60° or =1140,

r = 1.207, ? = 66° 23' and a = 113° 37'

;

three correspond to

cp = 420° or = 880°, <p= 900° or = 1200°, <p= 300° or 1380°

r = _ 0.207, = = 21° 31', and . = 15S° 29'

;

three correspond to

cp
— 733° 41', cp == 1213° 41', 9 *= 253° 41',

for each of which

r dz 0.322, E = 156° 26',

or to

9 = 1273° 41', v == 313° 41', 9 = 793° 41';

for each of which

r = — 0.322 « = 143 1';

three correspond to

» = 406° 19' <p = 886° 19', g> =± 1366° 19';

for each of which

r = — 0.322, » = 36° 59',
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or to

<p =z 946° 19', <p = 1426° 19', <p = 826° 19;

for each of which

r = 0.322, e = 23° 34'.

26. Construct the locus of the polar equation

r — a<P -\- a—<P.

Arts. This curve (fig. 165.) has an infinite number of mul-

tiple points, corresponding to

<p = ±: rc.l80°,

in which n is any integer.

175. When a curve is continuous at a point, but

changes its direction so as to turn its curvature the op-

posite way at this point, the point is called a point of

contrary flexure, or a point of inflexion.

Thus M (figs. 166 - 169) is such a point.

176. Problem. Tofind the points of contrary flexure.

Solution. It is evident, from the comparison of the two tan-

gents M' T> (figs. 165-169.), and M" T" near M,
that the value of the angle MTX or r is either a maximum
or a minimum at the point M.

The points of contraryflexure correspond, therefore, to

the maxima and minima of the angle r.

177. Corollary. When the equation of the curve is given in

rectangular coordinates, we have by (549)

tang, t — de .y;
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so that the maxima and minima of * correspond to those of

d
c . y, except at those points where r is a right angle.

178. Corollary. It is evident, from (figs. 166-169),

that the convexity of a curve is turned towards the axis

of x. when the angle * (or its supplement, if the curve

is below the axis) increases with the increase of x :

otherwise the convexity is turned from the axis.

179. Examples.

1. Find the point of contrary flexure in the locus of exam-

ple 1, § 164, and the tangent at this point.

Solution. We have, in this case,

dc .y = — [log. (x— a)]-a (x — a)-i

dly = (z— of-? [log.(x— «)]-3 [log.(x-a) + 2];

so that the point of contrary flexure corresponds to the point

M' (fig. 56.) for which

log. (x— a) + 2 =
x— a-\- 0.135. y — b — 0.5

r — 61° 38'.

2. Find the point of contrary flexure in the locus of example

2, § 164, and the tangent at this point.

Ans. It corresponds to

x = a + 7.3S7, y= b + 3.694, r — 26° 33

.

3. Find the point of contrary flexure in the locus of exam-

ple 3, § 164, and the tangent at this point.

25*
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Ans. It corresponds to

x = a + 1, y — b + 1, r = 26° 33'.

4. Find the point of contrary flexure in the locus of exam-

ple 5, § 164, and the tangent at this point.

Ans. It corresponds to

x — a-\- 0.223, y = b— 0.335, r— 155° 57'.

5. Find the point of contrary flexure in the locus of exam-

ple 6, of § 164, and the tangent at this point.

Ans. It corresponds to

x = a + 0.340, y = b + 0.085, T = 135°.

6. Find the points of contrary flexure in the locus of exam-

ple 7, § 164.

Ans. There are two which correspond to

x= a+ 0.683, y — 6+ 0.068, t=162°8'

x= a+ 0.073, y — b+ 0.035, r— 31° 6'.
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Approximate value of an explicit function.

CHAPTER XII.

APPROXIMATION,

Almost all theoretical results, when converted into

numbers, are insusceptible of exact expression, and can

only be obtained approximatively. Hence, in all its

practical applications, ready and rapid means of ob-

taining approximations are the only object of the exact

science of mathematics
;
and the great labor, which

has been bestowed upon this subject, is the distinguish-

ing characteristic of the modern science.

ISO. Problem. To obtain by approximation the value

of an explicit function.

Solution. The only useful method of accomplishing this

object is to arrange the function in a series of terms, which

are susceptible of easy calculation and decrease as rapidly as

possible.

I. When the variable is very small, the function is, at once,

arranged by means of AlacLaurin"s theorem (447) in a

series of terms, which are multiplied by the successive powers

of the variable, and are, therefore, usually decreasing.

II. "When the values of the function and its differential

coefficients are known for a given value of the variable ; the

function can, for another value of the variable, which differs

but little from the given one, be arranged, by means of Tay-
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lor's Theorem (445), according to the successive powers of the

difference between the two values of the variable.

III. Besides the formulas thus obtained, other formulas

can often be found, by processes dependent upon the nature

of the functions and the tact of the geometer ; and some for-

mulas, often of great use, will be given in the Integral Calcu-

lus.

Scholium. Formulas (478, 484, 487, 492,493,500,501,

504, 509, 513, 515), are examples of useful developments.

181. Problem. To obtain, by approximation, the

values of an implicit function, ivhen its value is known

to differ but little from that of a given explicit func-

tion.

Solution. Let

x =r the required implicit function

t = the given explicit function

x — t = e = the excess of x above t.

Find the algebraic equation for determining e, and let it be

reduced to the form

e = Fx,

where F x is a small function of x. which we may denote by

a z, in which a is any small quantity, and z the function of x

obtained by dividing e by a ; we have then,

e = Fx = az (631)

x=zt+e = t + Fx = t + az. (632)



§ 180.] APPROXIMATION. 297

Lagrange's theorem.

Now we have by MacLaurin's Theorem for any function u of

x if we develop it according to powers of a, and denote by w ,

dca u , &c, the values of udcau, &c, when

a = o

a 2 a 3

u = u + dc _a u . a + dfM u . — + d% u . jj^ + &c.

Again, if we put (633)

dL. u = u'
}
rf« u = u'

, (634)

we have by (566),

dct u = u' dct x, . (635)

d
c . a u = u> dc .a x. (636)

But the differentiation of (632), gives, by putting

z' — dc .x z, (637)

dc . a x — z + ad^z^z + az' dc _ a x, (638)

whence

d x- Z
<
639

)

In the same way, the differential coefficient of (632), rela-

tively to t, is

«U * = 1 + a JJ z= 1 -f a z' dct x, (640)

whence

d x - —L_ (641)
"

1— as"

and, therefore,

dc , a x— z dct x (642)

dca u — u'z dct x. (643)



298 DIFFERENTIAL CALCULUS. [b. II. CH. XII.

Lagrange's theorem.

The differential coefficient of this last equation, relatively to

t, is

or

d\.a dc .t u = dct (u' z dc , t
x),

dca (u' dct x) = dc

A

(u' z dcA x),

(644)

(645)

in which any function whatever of x may be substituted for u'

By substituting for u' in (645) the fnnction zn u' of z, we
have

dc .a (z
n
u' dcA x) = dc

-

t
(%»+! u' dct x). (646)

Now the successive differential coefficients of (643), rela-

tively to a, are by (646),

dlau == dca (z u' dCJ x) = dcA (z2 u' dct x) (647)

d*a u = dc, dc _ a (*» „/ dc;t x) = d*, (» u> dCJ x) (648)

and in general

dla u — dc . t
dCM (zn-^u' d

c _ t
x) — d"-1 (z

n
v! dc , t

x) (649)

Now if in (641 and 646) we take

a = o

we have

dca x =z 1

dCM u = k' z

t^'^-iK^) (650)

whence by (631)

a dc ,a u = a u' z — u' JP. t (651

)
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«2 dla u = dcA (a^ u' z*) = dcA [u' (F. ty]

a" dl a u = d*- 1 (a* u' zn ) = d*-* [u' (F% t)*] (652)

which, substituted in (633) give

u = «„ + v! F.t + *•' ["'j (^
)2

]- + &e. . . . (653)

which is called Lagrange's Theorem.

Corollary* If

u — x, (654)

u' z=z 1, uQ = t

and (650) becomes

Corollary. If instead of (632), x had been the given func-

tion of t -f- a %

z =/.(* + a z) (656)

we might have put

x' — t + a z, (657)

and u would have been a function of x', and that if such

u = tp . x (658)

we have

and if we put

<

U— (p .f .x'

= 4* 9 ,/- '.

(659)

(660)

The formula (650) may be directly applied to this case.
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The theorem (65f£) under this form of application, has

been often called Laplace's Theorem; but, regarding

this change as obvious and insignificant, we do not

hesitate to discard the latter name, and give the whole

honor of the theorem to its true author Lagrange.

Examples.

1. Find the mth power of a root of the equation

z = t + <*x? (661)

in which « is a small quantity.

Solution. In this case

F.X = axP, F.t = a tP

u =ztm , u' z= m t
m~l

dr-1

[u' . (F, r) = d'j1 (m an r?+ m- *)

=m«" {np-\-m—1) (np-\-m—2) (np+m—«+l) l
nP+m~n

and, therefore,

1 . z

Corollary. When (662)

m = 1

(659) becomes (663)

1 . Z 1 . Z . o
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2. Find the value of x from the equation

x __
f _|_ a e

mx

in which « is small and c is the Neperian base.

Ans. (664)

x — t -f aemt+ m a 2 e
2m'-j-—-9ffl'« 3 e

zmt + &c.

3. Find the value of e
nx

, from the preceding example.

Ans. (665)

e
nr — e"' + « » e («+"> ' + £ " 2 n (2 m + w) c (2 ™+») f+ &c.

THE END.

26





ERRATA.

Page 10, line 7, for polymonial read polynomial 1. 10, for b read d. — 1. 22, for 19 read
20.

Page 13, line 16 and 1. 19, for 2-4 read 25.

Page 19, line 18, for A E read A B.
Page 21, line 6, for quadrilateral read quadrilaterals.

Page 22, line 7, for x' read z.

Page 26, line 11, for sin. (<p + .#*) . sin. j2' read sin. (fp + •£') : sin. A'. — ]. 14, for

c. J3C read c: £C.
Page 27, line 8, for CB' + CD' read B' D' =— CB' + C'i>'.

Page 30, liue — 4, for oftico axes read of the tico axes.

Page 34, line — 4, for those read that.

Page 39, line 7, for P' read B'.
Page 42, line 21, for in plane read in a plane.
Page 43, line 16, fur R' ' read L' '.

Page 44, line 2, for^o?'«t Z) read pomi B.— 1. 4, for C read Z. — I. 7, for o?* read and.
Page 45, line 13, for (x'—i')2-^ (#'— J/')'

2 read (z'— z)2 -J- (?/*— ?/)2.

Page 46, line 7, for £'£ read ££.
Page 47, lines 1 and 3, for AB read BB'.— h 14, for 82, read_84. — 1. 18, for the angles
read the cosines of the angles.— 1. — 2, for angle read angles.

Page 48, line 3, for 83 and 84 read 85 and 86.— 1. 6, for rcctanglar read rectangular.
L — 5, for 84 read 86.

Page 50, line 2, for 83 read 85.

Page 64, line — 2, for —— read
A c

Pasre 65, line —4, fox AF— AC read AF— FC.
Page 67, line 6, for CE = CE' =AF— AF' =A read AE = AE =s AF= AF' =. c.

c A
1. 8, for —- read 1. 13, for A2— c2 read c2 — A®.'A c

'

Page 69, line 8, for for ellipse read for the ellipse. 1. 16, for 3 read «•

Paga 75, line 9, for P read R.
Page 77, J. 10, for axes read axis.

Page 78, line — 3 — 2— 1, for 3 — a = ^ tv, (1 = ^ tv -\- a, COS. 3= — sin. a
read a — 3 = £ tt, (J

=' a — ^ -r, cos. /J = sin. a.
Page 79, line 1, for — read -f. 1. 19, for coordidatcs read coordinates.

Page 80, line — 6,-5,-4, and — 2, for fi read /. • for v read u j for 7. read r.
Page 96, line 1, for by read be.

Page 107, line — 1, the first member of the equation should be doubled.
Page 109, line — 7, dele may be. 1. — 6, dele would.
Page 113, line 10, for E read— E.
Page 1J4, line — 4, for S read X
Page 117, line — 8, l'or 225 read 257 ; for example 2 read example 3.
Page 118, line 2, for art. 23 read (23).

Page 1]9, line 12, for lower read upper. 1. 15, for X = ± read % — -f- ^/
Page 120, line 7, for x read z. 1. 9, for y read y.

'

2
2

Page 124, line — 2 and page 125, 1. 4, for tang. I read — tan°- I
Page 125, line 10, for CM' read CM. I. 11, for M and JIF read C and C.rage 126, line 12, dele —

.

Page 127, line — 4, for C read c.

PZ™A ]

A£rio
S

ia CwSSi £JY
L7 6

'
fmJMJ™ C'Mandthe line drawn throughm^Sre^^m^ lmC draWn thr°USh °» L ~ 5

'
fw *'M^i ?°r

Page 130, line 1, for £ read F. 1. 10, for z , read to.
Page 134, line 12, for zj. read z2 .

Page 136, line 3, for S read X
Page 137, line - 2, for [(S . m >) 2 _ 2] read - • for S' read & 1. _ 1, for %' 4- y<
read z'2 _|_ y 2. 2 \

J 2
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p read + p. 1.— 4, for COS. 2 read
1, for 771

Page 138, line 11, for M read m. 1. —7, for

cos. 2 for (Sm
1

sin. 2 «
2
)2 read (#mj sin.^aj) 2

;
i.

read M.
Page 144, line — 7, for y z read x z.

Page 147, line 14, for eight read six.

Page 149, line 3, for A read A% ; 1. 10, for t/te azis read £/ie axis of z.

Page 153, line — 7, for x' read X
±

.

Page 155, line 6, for c read b.

Page 157, line 8, for 366, read 365. 1. 9, for 373 read 374.

Page 158, line — 5, for parameter read semi parameter.

Page 165, line 7, for one, which contains only read a polynomial, which contains only positive,

Page 171, line 9, for (p • n read y.
n

.

Page 173, line 5, for 12 read 25.

Page 180, line 1, for variable read functions

.

Page 181, line 4, dele second.

Page 189, line 6, for vanished read vanished with the variable ; I. — 1, for #• read ^n.

Page 191, line 3, for d2.f.f- read ^2/f .

Page 193, line — 4, for— read -4-.

Page 194, line 1, for 483 read 473.

x 7P^ a04, line-6, for + - 28 .4 .5 .6 .7 "*- HJ.UM
read 5 ; 1. — 2, for 81 read 82.

Page 205, line 6, 8, and 12, for ^ 7V read £ n.
Page 206, line 1, for + read — j 1. 2, for — read +.
Page 209, line 4, for I read f

.

Page 214, line 1, for xO read xQ ,

Page 217, line 8, for 41 read 42.

Page 218, line 1, for B read A.
Page 219, line 1, for maximum read minimum.
Page 220, line — 4 for A read M .

Page 221, line 3, for MNMi read J^MM 1 . 1. — 6, for A read Z
.

Page 222, line — 4, dele t/te o?-cZ£t- of.

Page 225, line — 9, for lo read J2 .

Page 225, line 12, for 548 read 550.
Page 228, line — 1, for C read c.

Page 229, line — 10, for 2 cos. £ cp read 2 sin. 2 £ 9 ; 1. — 7, for 39 read 37.
Page 230, line 12. for cos. read sin.

Page 233, line 5, for R read r.

Page 237, line 5, for or roadawd.
Page 238, line 3, for 128 read 123.
Page 239, line — 4, for x y read x z.

Page 241, line 5, for sin. 1 read sin. 2 .

Page 242, line 6, for sin read cos. ; 1. — 1 for 2 (2 7T read 2 7T (2.
Page 243, line 5, for curvature read curve.
Page 245, line 2, for S read s |.

Page 246, line 4, for 3 read |.
Page 249, line 8, for drawn read o/a straight line drawn.
Page 254, line 9, for tangents read tangent ; 1. 10, for # read y.

Page 256, line 12, for reprr.nts read represents.

Page 260, line 7, for junction read function ; 1. 6, for zero read M7iit7/,

Page 266, line — 3, for increasing read decreasing.

Page 266, line 6, for M' lead J)f j 1. 14, for P read P".

Page 269, line — 1, for p'
2 T2 read T2P 2

>

Page 271, line 14, and page 274, 1. —9, for second read first.

Page 288, dele line 9.

1. —3, for 6



ncw&maaiB PZ2.

$:ii J42

F./2J42

J} E C
F.J3JT42

-
B &J4J?42

^———J^
T J

<r

A H D

nE' E
^HIT^45

yS

"'A

F.18S47

A





|T|:\ Eg ,\> II p'.ras CTI EKTS .



**



FMJUTMMSTS < PL.H.

£25£07

J L
p p-

' T.27J70

E29£ 74





B.l iTiewtes akjd) Firr^-(cipir©i!rg
Pin.

B" R

1

»

i«B'

R"

P" A

B^

—lB n'-

R"

%29 J? 74

JEt
B ^^ z

P
B"

L^ -^V
^^^^ q^^Jq

L' h L" A

? ^L^TB/ ^^=^/ £MS ™i^^^.



.



KS9S98W , ^trz





B.1 Cl'l^'lv.-s MS l» V[\y,, VUY>
i'/JII

]1 T.34&98

\
F X i- )

c

K35f&#









B.l. C I'Rv|.;m a^'i) h'r:\'r"t"i (»§ .

EE1V.





D J-TT^rc Ti.r.

X
OK F.57 S 164

A£

\ —A x

F.60S164





B.IT. CT'Jstj; s A^ J) jvryc^ iriraws





-

F.66 #264

A X

F66'J"164

F. 66' #164

\

F..6P Jt 164

P

F. 70 f!64

F 7$jfl64

74 J?164





B. //. CUHRyiES AJTJB) WfljKC
Ti:n.





n :
;. : [ r ;

. YZL

F.6-2

A ^—_ P.

"I

""•—^\_S w

/: S3

\Si I Bs_

W

y
/ F&2

A / P»













C a B FJBS A.- I) K.\. . 3F3 ... § pi.mr.

yr-

F.$9fl64
i / -

N
A' / F9SJT184 \

I J A \





IF "TIT!? 73 V^S* mix.

p / \p

/Pi ip.







IJ
.







C \[ E ? EJ3 \ f | I
;,'

;
v pap [ (,>';





T7.XL.







^m







//.//. imriKvlKS A1YJD) TB'HIKTTTOIS'S, PLTLL-





TIXIIL





r n v :iii a ;\ :t ;id [.' -yy r tip .ets .



1



"D TTSrCTI-OITS. Fl.XH'

ii>7





CI'Ti VKS :\>V :R) IfHTKinPIvlDrrS



A











C*
> -V

'*

V

.




